
A Hardware Accelerated Computer Vision Library for
3D Reconstruction Onboard Small Satellites
Caleb Adams

NASA Ames Research Center
Intelligent Systems Division

Moffett Field
Mountain View, CA

caleb.a.adams@nasa.gov

Jackson Parker
NASA Ames Research Center
Engineering Systems Division

Moffett Field
Mountain View, CA

jackson.o.parker@nasa.gov

Dr. David Cotten
Small Satellite Research Laboratory

University of Georgia
210 Field St.

Athens, GA 30602
dcotte1@uga.edu

Abstract—Here we present benchmarks and the expected per-
formance of the SSRLCV (Small Satellite Research Laboratory
Computer Vision) library that will be tested in Low Earth Orbit
onboard the 6U MOCI (Multiview Onboard Computer Vision)
cube satellite. The SSRLCV software library, used on the MOCI
cubesat, is written in CUDA and C++ for Nvidia GPU/SoCs
and performs structure from motion to generate 3D terrain
information from a series of locally generated orbital images.
Scale and Rotation invariant features are extracted from images,
matched between those images, then an initial 3D point cloud is
estimated with feature triangulation. Noise is removed from the
point cloud and a gradient descent method, known as bundle
adjustment, is used to refine the estimated camera parameters
and location information of the satellite. The research simulates
satellite imagery from LEO with 3D rendering software to test
image data. Tests are run on the Nvidia TX2 and TX2i with
timing, state, and power usage tracking. Reconstruction accu-
racy is measured by volumetric comparison and an Iterative
Closest Point algorithm to allow for comparison to ground truth
3D models. The results show accurate 3D reconstruction of the
surface of Earth feasible within 15 to 100 meters, depending
on the camera system and altitude, while maintaining favorable
power usage and computation time.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. FEATURE DETECTION, EXTRACTION, AND

MATCHING . 2
3. TRIANGULATION AND REPROJECTION 3
4. BUNDLE ADJUSTMENT . 6
5. INITIAL RESULTS . 7
6. PIPELINE TIMING . 9
APPENDICES . 13
A. CODE AND RESOURCES IN THIS PAPER 13
ACKNOWLEDGMENTS . 13
REFERENCES . 13
B. BIOGRAPHY . 14

1. INTRODUCTION
Overview

The University of Georgia’s (UGA) Small Satellite Research
Laboratory (SSRL) is utilizing a Nvidia TX2i Graphics Pro-
cessing Unit (GPU) with a specially designed interface board
for edge computing with the Multi-view Onboard Compu-
tational Imager (MOCI) Satellite Mission [1]. The MOCI
satellite uses a custom computer vision pipeline to generate
3D point clouds from a series of images. The MOCI pipeline
is a Structure from Motion (SfM) pipeline modified for use in

978-1-5386-6854-2/19/$31.00 ©2020 IEEE

a Low Earth Orbit (LEO) environment [2].

The Multiview Onboard Computational Imager

The MOCI mission will acquire imagery of the Earth’s sur-
face from LEO and perform 3D surface reconstruction at a
landscape scale using custom algorithms and modified off-
the-shelf, high performance computational units. The MOCI
mission will also identify and map or image surface objects,
including but not limited to coastal environment phenomena,
while training students in STEM-related fields. Efficient
data compression, feature detection, feature matching, and
SfM processing techniques of space-based imagery will be
performed on board the spacecraft as a proof-of-concept
of high performance, on-board processing capabilities. 3D
models produced by the MOCI satellite will take the form of
Point Clouds and Meshes as their end product for quick data
downlink.

Figure 1. The 6U MOCI satellite, seen with and without the
6U cover panel.

The data collected from MOCI will be processed onboard the
satellite while in LEO. This involves developing algorithms
and technologies capable of detecting and matching features
from multiple images, localizing features in 3D space, and
computing accurate depth from point correspondence. By
using high performance processors with these algorithms the
amount of data and time needed to downlink completed data
products will be greatly reduced.These goals align MOCI
with the 2010-30 Air Force Science and Technology Horizon
themes that can maximize capability superiority. Our system
advances research by helping shift from Platforms to Capabil-
ities, Control to Autonomy, Permissive to Contested domains,
and Sensor to Information [3].

MOCI is a 6U cube satellite with 3U entirely devoted to an
optical system. The optical tube, designed by the RUDA
cardinal corporation, produces 4K imagery at a Ground Sam-
ple Distance (GSD) of approximately 6.5 meters per pixel.
The optical system has a field of view of approximately
±2.4 degrees, which means strict requirements have been
placed on pointing and controls to ensure image overlap is
possible for 3D reconstruction. If image overlap cannot be

1

guaranteed, then 3D reconstruction will not be possible. The
MOCI satellite intends to perform slew maneuvers to achieve
multiple views of ground targets but may also preform base-
line stereo with minimal slewing.

Computer Vision Pipeline Overview

The overall goal of the MOCI’s computer vision software is to
take sets of 2D images and generate 3D models. One of the
first steps the computer vision pipeline is the detection and
description of features within the images. The pipeline then
seeks to match identified points within these images. Next,
some filtering removes matched points which are considered
bad. After good matches have been obtained, rays are
generated using camera parameters, the satellite’s location,
and match locations. Those rays are then ”reprojected” into
the real space using a triangulation. Thus, the goal with a
reprojection is to take the pairs of matched points and move
them from R2 into R3 so that equations of lines can be gen-
erated from the focal point of the camera into each matched
point. Then, we want to find the minimum distance between
those lines and choose the midpoint of that line segment at
our reprojected point. Those sets of points are considered
an unfiltered initial point cloud. Some additional filtering
is done to this point cloud and then the bundle adjustment
begins. The sets, or bundles, of lines which represent matched
lines are adjusted to minimize the mismatch error of the lines.
Techniques such as these are common in multiview geometry
and 3D reconstruction pipelines [4][5].

2. FEATURE DETECTION, EXTRACTION, AND
MATCHING

Two widely used concepts to begin to determine 3D infor-
mation, which take in arbitrary input images and attempt to
identify common features between the images, are feature
extraction and feature matching [6][7]. While this is intuitive,
identifying features and determining a consistent method for
matching two features is computationally expensive. This
is why we choose to parallelize computations on a Graphics
Processing Unit (GPU) with Compute Unified Device Archi-
tecture (CUDA). In addition, knowing the camera’s geometry
and optical properties are vital. Solutions such as bundle
adjustment [8] can optimize the knowledge of the full system;
however, in regards to the application of satellite imagery,
many assumptions can be made to improve the capabilities
of imaging systems constrained in an orbital environment.

Effective and efficient feature matching is key to advancing
on-orbit imaging capabilities and terrestrial data gathering
techniques. The ultimate goal for these imaging systems is
the ability to register features and decide how to decipher
a solution for the objects detected [9][10]. The methods
described here use a standard Scale-Invariant Feature Trans-
form (SIFT) algorithm from Lowe’s original implementation
[11][12][13][14].

SIFT - the Scale Invariant Feature Transform

The SIFT algorithm can be broken up into many component
stages. First, the SIFT algorithm attempts to identify extrema
in scale space. These points are considered candidate points
for feature description and are what make the algorithm scale
invariant. Next, the algorithm achieves rotation invariance
by assigning orientations to particular points from the scale
space generation. Finally, the algorithm generates a feature
descriptor in the form of a vector of 128 orientations, a his-
togram of oriented gradients. When this is performed across

multiple images, nearly identical histograms are considered
nearly identical points.

The Matching Problem

Subpixel dense matching is the most computationally expen-
sive piece of the algorithm by orders of magnitude. We are
given two input images I1 and I2 that are both n x m pixels
in size. Each index pair (i, j), where 0 ≤ i < n and
0 ≤ j < m, indicates a feature’s location on the image in
pixel coordinates. We denote a feature by fimage #(i, j),
which is a 128-dimensional normalized feature descriptor.
We then check two features for a match by calculating
||f1(i1, j1) − f2(i2, j2)||. The goal is to pair each feature on
the first image with the feature on the second that most closely
matches its feature descriptor. The exact difference between
the features need not be zero, just the closest possible match.
The results do produce noise, so later filtering is required to
remove features that were matched too liberally. Thus the
precise goal mathematically, for every feature f1(i, j) ∈ I1
and f2(i, j) ∈ I2, is to compute:

min
(i′,j′)

||f1(i, j)− f2(i′, j′)|| (1)

The computational complexity of this process is O(n2m2)
because all features in image I1 must be searched against
all features in image I2. This is computationally expensive,
even in a GPU accelerated framework. luckly, epipolar
geometry can be exploited in order to narrow this search
space significantly.

Epipolar Geometry and the Fundamental Matrix

Epipolar geometry is the projective geometry between two
views. When two cameras view a 3D scene from different
positions, there are some geometric relations between the
3D points and their projections onto the images that define
useful constraints between image points. Figure 2 depicts two
cameras looking at some point X in world space.

C e e′ C ′

x

X?

X

X?

x′

l′ ± ε

Figure 2. Epipolar geometry with epipolar line l′ and
constrained search path l′ ± ε

Let C and C ′ be camera centers for our two views, and let
x be some point on the first image. Figure 2 shows that x

2

alone is not enough to determine a unique location of the 3D
world point X as any points on the line segment from x to
X in the picture would project to the same image location on
image 1; however, each one maps to a different location in
image 2. If we were to project this entire line to image 2,
then we would end up with a line segment which represents
the valid potential locations for the corresponding matched
point x, depending on the exact location of X in space. This
line, referred to as the epipolar line, can be determined for
every feature point. The fundamental matrix, denoted F ,
maps every point in image 1 to a corresponding epipolar line
in image 2, and vice versa.

The fundamental matrix F is the algebraic representation of
the epipolar geometry between two views. For a given point
x on image 1, the matched point x′ in image 2 must lie on the
epipolar line l′ = Fx. This constraint is summed up by the
equation:

x′TFx = 0 (2)

which holds for all corresponding points (x, x′). In practice,
this equation does not perfectly hold for all matched points,
so point correspondence is not mathematically perfect. This
is a combination of the accumulation of small floating point
errors and errors in the initial estimation of keypoints during
feature extraction. This error increases as the distance be-
tween x′ and l′ increases.

Restricted Search Region from Epipolar Geometry

An important issue with feature matching in general is deal-
ing with mismatched points. That is, two points may be
matched because their feature descriptors are similar even
when the two features represent two entirely different points
geometrically from the 3D scene. This mismatch of feature
points can cause mathematical problems when using the
matches later on, especially in applications such as 3D scene
modeling that use a least squares algorithm and tend to be
sensitive to outliers. Therefore, removing these outliers from
the matched point data set is a vital post-processing step for
matching algorithms.

One should recall from the previous section that outliers
occur when matched features do not lie anywhere close to
the epipolar lines of the corresponding feature. Since we
already have this metric to determine error in matching, we
can proceed to select some outlier tolerance threshold ε in
pixels. Next, for each f1(i, j) ∈ Ii, compute the epipolar line
l′i,j = F ḟ1(i, j). Define the set:

Hi,j ⊂ I2 = {h ∈ I2 | d(h, l′i,j) ≤ ε} (3)

where the function d is the distance in pixels between h
and the epipolar line l′i,j . We can now modify our original
equation to only search in this region H:

min
(i′,j′)∈Hi,j

||f1(i, j)− f2(i′, j′)|| (4)

Note that our outlier tolerance ε represents an error bound
which, if exceeded by any feature match, should be labeled
a mismatch and thrown out. Since we are able to define this
region geometrically, we save a huge amount of computation

z = f
C

Cz

Cy

Cx

y − res
2

x− res
2

x

y

(x′, y′)

~v

Figure 3. A visualization of line generation and
reprojection from the image space to the world space

by only searching in this constrained region. The size of the
constrained search space depends directly on our selection of
ε, so we can compare results for different choices of the value,
including ε =∞ (no search restriction).

3. TRIANGULATION AND REPROJECTION
The goal of triangulation (also known as reprojection) is to
take the pairs of matched points from the SIFT algorithm and
move them from the camera’s image plane in R2 into world
coordinates in R3. After being translated into R3 equations of
lines can be generated from the focal point of the camera into
each matched point. Then, the minimum distance between
those generated lines can be used to choose the midpoint as
an estimated 3D coordinate.

Generating Equations of Lines

The generations of sets of lines, within the context of SSRL
software, is known as bundle generation. This is because
the sets of lines can be thought of as a bundle of matched
lines. For a given 3D reconstruction there are potentially
many hundreds of thousands of bundles. These bundles may
contain 2 lines, but they may also contain many more lines.

The goal here is to generate a parametric equation of a line
given camera position and orientation coordinates C, the
camera focal length f , and the position of a coordinate in
R2 on the image plane. We wish to generate vector v that
can be used to make the parametric equation. The 2-view
reprojection takes the matched points between 2 images and
places them into R3. To place each set of points into R3,
some trigonometry and and matrix transformations need to
take place. The first step to moving a keypoint into R3 is
to place it onto a plane in R2. the coordinates (x′, y′) in R2

require the size of a pixel dpix, the location of the keypoint
(x, y), and the resolution of the image (xres, yres) to yield:

x′ = dpix

(
x− xres

2

)
y′ = dpix

(
y − yres

2

)
(5)

3

This is repeated for the other matching keypoint. The co-
ordinate (x′, y′, z′) in R3 of the keypoint (x′, y′) in R2 is
given by three rotation matrices and one translation matrix.
First we treat (x′, y′) in R2 as a homogenous vector in R3 to
yield (x′, y′, 1). Given a unit vector representing the camera
orientation (rx, ry, rz), in our case the spacecraft camera, we
find the angle to rotate in each axis (θx, θy, θz). In our simple
case we find the angle in the xy plane with:

θz = cos−1

(
[1 0 0] · [rx ry rz]

)
√

[rx ry rz] · [rx ry rz]
(6)

It is important to note that the software treats all planes in an
identical way, rotating in several axis. Now, given a rotation
in each plane (θx, θy, θz) (lets call this rotation matrix Rθ),
we calculate the homogeneous coordinate (rx, ry, rz, 1) in
R4 using linear transformations. The values (Tx, Ty, Tz)
represent a translation in R3 and use camera position coor-
dinates (Cx, Cy, Cz), the camera unit vectors representing
orientation (ux, uy, uz), and focal length f . Let the rotation
matrix R in equation (7) represent a 3x3 rotation matrix
generated from multiplying component rotation matrices of
each axis.

Rθ

xyz
1

 =

xryrzr
1

 (7)

Cx − (xr + f · ux)
Cy − (yr + f · uy)
Cz − (zr + f · uz)

1

 =

TxTyTz
1

 (8)

1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1


xryrzr

1

 =

x
′
r
y′r
z′r
1

 (9)

The above process should happen for all points that
have been matched. This will result in 2 homoge-
neous points that we will call [x0 y0 z0 1]

T and
[x1 y1 z1 1]

T . Each point has a corresponding camera
vector, that is already known thanks to the camera coordi-
nates, [Cx0 Cy0 Cz0 1]

T and [Cx1 Cy1 Cz1 1]
T .

From this we can make parametric lines L0 and L1 with the
parametric variables t0 and t1:

L0 =

[
x0 − Cx0
y0 − Cy0
z0 − Cz0

][
t0
t0
t0

]
+

[
Cx0
Cy0
Cz0

]

L1 =

[
x1 − Cx1
y1 − Cy1
z1 − Cz1

][
t1
t1
t1

]
+

[
Cx1
Cy1
Cz1

] (10)

Minimum Distance Between Skew Lines—Now that we have
lines L0 and L1, the challenge is to find the points s0 and
s1 of closest approach. First, we must test the assumption
that our lines are skew, meaning they are not parallel and do
not intersect. To frame this, we take the forms of L0 and L1
and simplify them by thinking of them as parametric vectors
where C0 and C1 represent the camera position vectors v0
and v1 represent the vector was previously calculated from
the subtraction of match coordinates with the camera vector.
We make the simple equations:

L0 = v0t0 + C0 L1 = v1t1 + C1 (11)

To make sure that the lines are not parallel, which is unlikely,
we must verify that their cross product is not zero. If v0 ×
v1 = 0, then we have a degenerate case with infinitely many
solutions. As long as we know this is not the case we can
proceed. We know that the cross product of the two vectors
c = v0×v1 is perpendicular to the lines L0 and L1. We know
that the plane P , formed by the translation of L1 along c,
contains C1. We also know that the point C1 is perpendicular
to the vector n0 = v1 × (v0 × v1). Thus, the intersection of
L0 with P is also the point, s0, that is nearest to L1, given by
the equation:

s0 = C0 +
(C1 − C0) · n0

v0 · n0
· v0 (12)

This also holds for the second lineL1, the point s1, and vector
n1 = v0 × (v1 × v0) with the equation:

s1 = C1 +
(C0 − C1) · n1

v1 · n1
· v1 (13)

Now, given two points that represent the closest points of
approach, we simply find the midpoint m:

m =

[
(s0[x] + s1[x])/2
(s0[y] + s1[y])/2
(s0[z] + s1[z])/2

]
(14)

N-View Reprojection

At this stage we are exclusively in R3. For the pur-
pose of our software, we expect points in the form P =
(px, py, pz) and their corresponding orientation as a unit
vector Û = (ûx, ûy, ûz) we expect these together in a
tuple ((px, py, pz), (ûx, ûy, ûz))n. This tuple comes with
several (n many) tuples which all uniquely correspond
with a matched set. So we have a R3 match set M =
{(P, Û)0, (P, Û)1, ..., (P, Û)n} where n is the number of
tuple pairs and has a one-to-one correspondence with the
number of views in which the R2 match was found. We also
generate a set of R3 matches, Mi, resulting in a set which has
a one-to-one correspondence with the total number of points
we should have after reprojection.

In figure 4, assume that point C is the correct real world point
and has no orientation. The goal is to make a best guess at the
value of C given our imperfect information.

4

0 1 2 3 4 5
0

1

2

3

4

5

(P, Û)0

(P, Û)1

(P, Û)2

C

Figure 4. Nview triangulation / reprojection example within
a single plane

3 by 3 Inversion Method—A method which finds a ”mid-
point” for n many views with minimal computational cost is
described as follows: At this point we do not actually know
the coordinates of the real point C, but we will derive how to
find it. First, consider the identity:

(m× n) · (m× n) = ||m||2||n||2 − (m · n)2 (15)

Then, note we have the distance function, measure how much
a given ((px, py, pz), (ûx, ûy, ûz))n tuple (which represents a
line) misses the real world target point C. Note this function
is calculated for each tuple.

Dn =
||(C − Pn)× Ûn||

||Ûn||
(16)

We will want to use the square of the distance (as is common
in many optimization problems) to insure convex optimiza-
tion and positive distance values. We also use the identity
mentioned above to get our primary distance equation. Tak-
ing the first derivative of the distance function will give us a
local minimum value by finding a 0 solution.

Dn =
||(C − Pn)× Ûn||

||Ûn||

D2
n =

(||(C − Pn)× Ûn||
||Ûn||

)2
D2
n =
||(C − Pn)× Ûn||2

||Ûn||2

D2
n =
||C − Pn||2||Ûn||2 − ||(C − Pn) · Ûn||2

||Ûn||2

D2
n = ||C − Pn||2 −

||(C − Pn) · Ûn||2

||Ûn||2

dD2
n

dC
= 2(C − Pn)− 2Ûn

(C − Pn) · Ûn
||Ûn||2

(17)

We need to find a zero for the following (note that we are
dealing with a vector in R3, so 0 = [0, 0, 0]T). The value m
is the total number of R3 match points:

0 =

m∑
n=0

C − Pn − Ûn
(C − Pn) · Ûn
||Ûn||2

0 =

m∑
n=0

C − Pn −
Ûn(C · Ûn)

||Ûn||2
+
Ûn(Pn · Ûn)

||Ûn||2

0 =

m∑
n=0

C − Pn −
ÛnÛ

T
n C

||Ûn||2
+
ÛnÛ

T
n Pn

||Ûn||2

0 =

m∑
n=0

(
I − ÛnÛ

T
n

||Ûn||2
)
C −

(
Pn −

ÛnÛ
T
n Pn

||Ûn||2
)

(18)

This is of the formAx = b because we now have 0 = Ax−b.
Thus, we can remove the summations and get a system that
results in taking an inverse of a 3 by 3 matrix.

Notice the possible expansion:

0 =

m∑
n=0

(
I − ÛnÛ

T
n

||Ûn||2
)
C −

(
Pn −

ÛnÛ
T
n Pn

||Ûn||2
)

0 =

((
I − Û0Û

T
0

||Û0||2
)

+
(
I − Û1Û

T
1

||Û1||2
)

+
(
I − Û2Û

T
2

||Û2||2
)

+ ...

)
C

−

((
P0 −

Û0Û
T
0 P0

||Û0||2
)

+
(
P1 −

Û1Û
T
1 P1

||Û1||2
)

+ ...

)
0 = (A)C − (b)

AC = b

C = A−1b
(19)

So, the meat of this method is to calculate the A matrix’s
inverse and multiply it by vector b to find the estimated point
C. Succinctly, these are calculated:

5

A =

m∑
n=0

(
I − ÛnÛ

T
n

||Ûn||2
)

(20)

b =

m∑
n=0

(
Pn −

ÛnÛ
T
n Pn

||Ûn||2
)

(21)

Then, because this method takes the inverse of a 3x3 matrix,
we can easily write (hardcode) a constant time inversion
method. This makes the method an ideal N-view triangulation
method. Additionally consider that this is run on GPU, so
the point estimations can occur in parallel for each matched
set of points. Similar benefits could be realized running the
algorithm on a multithreaded system.

4. BUNDLE ADJUSTMENT
Bundle adjustment seeks to minimize the error in the point
estimation methods mentioned above. It does this by iter-
atively adjusting the camera parameters, thus changing the
match sets of lines, or ”bundles”, such that the total error
of the system decreases to a local minimum. Usually it is
necessary to consider that the system will converge to a local
minimum only and not the global minimum. However, this
concern is not necessary for this computer vision software as
camera parameters are already relatively accurate.

Point Estimation Error

When points are estimated with the 2-view case, the minimal
distance between skew lines is calculated by taking the Eu-
clidean distance between the points. For that case the total
error of the point cloud is simple to calculate and is just a
summation of every point’s individual error, or the average
of that summation. The N-view case is similar; it can either
be calculated with the Euclidean distance between projected
estimated points onto the camera plane and their original
match point or by calculating the average. These methods are
an analog for the commonly used reprojection error, which
is not directly calculated in this case. Thus there are four
possible error functions, though only the last two are used
practically:

1. Linear Error: Only calculated in the 2-view case, linear
error is the shortest distance between matched lines.
2. Average Linear Error: Calculated in the N-view case,
average linear error is the average shortest distance from the
estimated point to its corresponding line.
3. Squared Linear Error: This is the practical 2-view error
measurement, used so that the error function can be used in
convex optimization.
4. Squared Average Linear Error: This is the practical N-
view error measurement, used so that the error function can
be used in convex optimization.

Their resultant functions of the practical error measurements
are analyzed further in the following sections.

Noise Removal

The distribution of error (calculator of error is above) in 3D
reconstructions is typically considered to be Gaussian. Thus,
statistical filtering methods can be used to remove outlier
error points. The methods used here start by calculating a
sample variance, σ2 , from a random set of points. Let a

given sample point be si and the average of the total error be
s̄, then the sample variance can be calculated with equation
(22)

σ2 =
1

n

n∑
i=0

(
si − s̄

)2

(22)

Then, all points with some error outside of some n · σ, where
n ∈ Z+, can be discarded. In addition to the error function,
the resultant point cloud can also be filtered on distance to
k nearest neighbors. The nearest neighbors removal has the
effect of removing bad points from regions of relatively low
density and can still utilize the methods mentioned above.

Formulation as Gradient Descent

It is possible to formulate the bundle adjustment as an opti-
mization to minimize one of the error functions listed above.
Though many algorithms exist to solve this, Newtonian gra-
dient descent is implemented here because of its simplicity.
The most commonly used algorithm in bundle adjustment is
the Levenberg-Marquardt (LM) algorithm [8], which differs
from the standard Newtonian approach with its use of the
second derivative, in this context the Hessian matrix, and
contains a dampening parameter to slow the descent around a
local minimum. It is certainly possible to implement the LM
algorithm within the context of MOCI’s bundle adjustment,
this should be considered future work for SSRL lab members
or graduate students. However, given that camera parameters
are expected to be relatively accurate to start, the use of
a second order Newtonian method with simple dampening
might be considered sufficient for this application. If cam-
era parameters are not known, but are instead estimated by
some other computer vision procedure, then a more robust
optimization algorithm is likely needed. Additionally, noise
removal should not occur during the gradient descent as this
can cause false minima and rapidly deteriorate into gratuitous
point removal until no points are left.

First, consider the standard Newtonian gradient descent and
the parameters we are using for this descent in equation (23).
The position and orientation of the satellite are much more
uncertain than the focal length and field of view of the imager.
Thus, intrinsic camera parameters are considered, at least
for now, to be close enough to their optimal configurations
that they should not be modified. Instead, extrinsic camera
parameters (position and orientation) are to be modified when
searching for a minimum error. Let the chosen error function
be F (Cn) where Cn represents a vector of all input camera
parameters at iteration n.

Cn+1 = Cn − αnH†F (Cn)∇F (Cn) (23)

∇ is the gradient for the error function F with respect to all
camera parameters in the camera vector C. ∇ is a vector
of partial derivatives that are calculated via a finite central
difference. A given element of ∇, say ∂F

∂Cn[i]
, where Cn[i]

is the ith element in the vector Cn, is calculated with a set
size h along a vector e which is all 0’s other than a single 1 at
the ith index. This has the effect of only stepping a distance
of h along the ith element of Cn, thus estimating the partial
derivative, as seen in (24).

6

∂F

∂Cn[i]
=
F (Cn + he)− F (Cn − he)

2h

∂2F

∂Cn[i]2
=

−F (Cn + 2he)
+ 16F (Cn + he)− 30F (Cn)
+ 16F (Cn − he)− F (Cn − 2he)

12h2

∂2F

∂Cn[i]∂Cn[j]
=

F (Cn + hiei + hjei)
− F (Cn + hiei − hjei)
−F (Cn − hiei + hjei)

+ F (Cn − hiei − hjei)
4hihj

(24)

Additionally, the Hessian is calculated via a finite central
difference seen above in equation (24), which is defined
similarly to the gradient only with more than one change to
consider (a change in different parameters Cn[i] and Cn[j]).
The Moore–Penrose pseudoinverse of the Hessian H† is then
calculated to produce a stepsize adjustment for each step of
the gradient descent. The pseudoinverse is calculated, rather
than the direct inverse, because the Hessian may not always
be invertible. The process for calculating the inverse of the
Hessian involves calculating a singular value decomposition
(SVD), whereA = UΣV T for a given matrixA. To calculate
the pseudoinverse A†, matrices U and V T are transposed and
the inverse Σ−1 is obtained by taking the reciprocal of each
non-zero element within Σ. The equations cab be seen in
(25).

A† = (ATA)−1AT ≈ A−1

A = UΣV T

A† = V Σ−1UT
(25)

At each iteration of the descent, the dampening variable α,
seen in the initial equation (23) is decreased by a ration of the
previous error en−1 and the currently computed error en such
that αn = en−1

en
. Here the assumption is that en−1 > en;

when this is no longer the case, the algorithm has found a
local minima and exits.

Most bundle adjustment algorithms analyze how camera pa-
rameters are defined to help define derivatives. The camera
models defined here special properties that are derived in
other research the UGA SSRL has published [2].

5. INITIAL RESULTS
SSRLCV Simulations with Blender

Initial tests relied on manually importing 3D meshes into
Blender. These models were generated from the Ad-
vanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) Global Digital Elevation Model version
3 (GDEMv3). ASTER GDEMv3 is released as a GeoTIFF,
which is a Tagged Image File Format (TIFF) raster encoding
for images with extra georeferencing information (defined

by the Open Geospatial Consortium). At the time of writ-
ing, current versions of Blender poorly supported GeoTIFF
importing. As a result, some simple scripts were written
to convert the image into a 3D model. Thus, the height
information was converted to a mesh encoded as a PLY
filetype. Later, using the georeferencing information encoded
in the GeoTIFF, an image from Google Earth Engine was
applied to texture the mesh in Blender.

The resulting ASTER meshes are between 15 and 90 meters
in resolution, which means a given polygon face is a square
15m2 to a square 90m2. The resolution used for the manual
ASTER to Blender testing is 30 meters. The rationale here
was that, despite the models only being accurate within 30
meters, because the PLY format linearly interpolates the
height point locations in the raster it is possible to test for
sub-30 meter accuracy. This means it is possible to generate
a higher resolution model in the areas between raster height
points. Additionally, the ASTER GeoTIFF and its resultant
mesh can be viewed as a ground truth because the primary
goal is to calculate height on a given surface. Different
reconstruction methods can be compared by testing these
same data sets with different methods.

In addition to testing ASTER models in Blender, other pub-
licly available models can also be tested with the aid of
the BlenderGIS addon. The addon is superb for isolating
given regions of Earth and generating high quality textured
meshes. The workflow for generating BlenderGIS models is
much faster than generating models manually from ASTER
GeoTIFFs; the model resolutions are often better, the textures
used are often higher resolution, and they contain Earth
curvature correction. Because of this ease, BlenderGIS is
used for nearly all tests. The texture and model sources
used in BlenderGIS vary, with elevation models coming from
the NASA Shuttle Radar Topography Mission (SRTM) and
textures coming from aerial satellite imagery (monetarily)
acquired by Google.

An additional advantage of using the BlenderGIS addon,
instead of manually adding 3D models and textures, is that
the Google imagery used is very high quality and scales
well to variable GSDs when modeling camera systems in
orbit. Furthermore, the simulated images were generated with
orientations from a slew maneuver where the camera was
always looking at a fixed point on the ground. This was done
to ensure image overlap and have fine control over viewing
angles. These simulations assumed a circular orbit of 400km
and the desire was to input a certain θ viewing angle and
output the satellite’s orbital position at that viewing angle.
Slew times and rates for such maneuvers have been calculated
by the UGA SSRL in other research [2].

Noise Removal

Here we consider noise to be any point which should not
be within the pointcloud. Noise removal is a significant
challenge when designing 3D reconstruction algorithms, and
for the Small Satellite Research Lab Computer Vision (SS-
RLCV) it is necessary to remove erroneous 3D points after
the initial 3D triangulation. Points are assigned particular
errors, described in section 4.5.1, and can be filtered based
on these errors. The noise is assumed to be Gaussian. A
combination of linear cutoff filtering (removes all points past
a certain error) and statistical filtering (removes all points past
a certain multiple of the standard deviation σ in the error
distribution) yields very clean point clouds. Additionally,
filtering at the feature matching level should be used. In the
context of the SSRLCV software, this is known as seeding,

7

where an image known to be unrelated to the satellite images
is input as an example to counteract false positives. David
Lowe, the creator of the SIFT algorithm, recommends this
approach to improve matching [11] [12]. If no filtering
is done at this stage, then the resultant point clouds are
considerably noisier, thus reconstruction without a seed is
never recommended.

Figure 5. A visualization of the errors calculated for a
2-view case with filtering at the feature matching level. Red
represents points with errors which are extrema and light teal

represents errors which are close to zero.

When filtering 2-view reconstruction, the benefits of statisti-
cal filtering are most evident when viewing the distribution of
errors. The intuition here is to remove the erroneous points
which lay outside of the Gaussian. At first the distribution is
quite large, but still densely packed around the optimal error
of zero. It is important to observe that there are very few
extremely erroneous points, but those points often contribute
significantly to the total error of the point cloud. In order to
perform a proper bundle adjustment, described in section 4,
such points must be removed; otherwise their collective error
may dominate the optimization resulting in a local minima of
noise at the expense of valid points.

Filtering with the N-view case is less successful when only
linear cutoff and statistical filtering are used. At this stage,
it is necessary to perform regional density filtering because
statistical filtering still leaves a significant number of noisy
points and noise locations are considerably less dense in
structure than the intended point cloud.

Figure 6. A visualization of the errors calculated for a
5-view case with filtering at the feature matching level. Red
represents points with errors which are particularly bad and

light teal represents errors which are close to zero.

There is considerably more noise, and thus more error in the
cloud, for N-view cases. Overall the 2-view cases produce
less noisy clouds that are about as accurate as the N-view
clouds after filtering. N-view clouds require significantly
more filtering to extract a viable model. This is because the
N-view triangulation produces a wider spread of errors than
the 2-view triangulation, seen in figures 7 and 8. This causes
statistical filtering to time longer because it only removes a
certain percentage of outliers at a time.

Reprojection and Triangulation

The tests with Blender and BlenderGIS seek to provide
accuracy measurements which can be compared with current
methods for the computer vision software developed for the
MOCI mission. One of the most commonly cited existing

Figure 7. The distribution of linear errors in a 3-view
triangulation.

Figure 8. The distribution of linear errors in a 2-view
triangulation.

reconstruction methods is the Visual Structure from Motion
(VSFM) software released by Chang Chang Wu. Images
rendered in BlenderGIS are output in the PNG format, but
VSFM only accepts the JPG format. Images are converted
from PNG to JPG using FFMPEG at its highest conver-
sion setting with the simple command ffmpeg -i 1.png
-qscale:v 1 1.jpg. FFMPEG is a program which can
be brew, apt, or yum installed on your favorite UNIX-like
operating system.

The SSRLCV 2-view reconstruction outperforms the VSFM
2-view reconstruction by producing a more dense initial point
cloud and a more accurate initial point cloud. This is likely
due to the fact that SSRLCV requires camera parameters be-
fore a reconstruction where VSFM only estimates the camera
parameters. Both SSRLCV and VSFM modify these initial
camera parameters in the bundle adjustment, but SSRLCV
starts with estimated camera parameters which are likely
quite accurate and VSFM does not.

Meshlab is used to view the individual point cloud results.
The error between the ground truth model and the initial
2-view point cloud is calculated as a sum of the distances
between individual estimated 2-view points and their inter-

8

Dataset Res Views unseeded seeded 3σ filter 2σ filter 1σ filter
Everest 1024 2 538618.1875 506.1283 19.8736 10.6172 6.9021
Everest 1024 3 27499.1660 14654.0087 5474.9116 3766.6467 1601.0681
Everest 1024 5 93405.1875 52093.9765 28640.6523 19155.5859 8549.2802

Table 1. Data on error removal correlated to point removal when filtering. Note all statistical filtering occurs after seed
filtering, as this is the expected usage.

Dataset Res Views unseeded seeded 3σ filter 2σ filter 1σ filter
Everest 1024 2 0.7316 0.2266 0.2105 0.2079 0.2039
Everest 1024 3 0.7136 0.5124 0.4811 0.4646 0.4245
Everest 1024 5 0.7717 0.5796 0.5663 0.5506 0.5093

Table 2. Average distance, measured in km, of a point to 6 neighbors at certain error function filters.

section with the 3D model below them.

Generally, view number is not correlated with an increase in
model resolution for SSRLCV, but is correlated with model
resolution for VSFM; this can be seen in table 3. In some
cases, the noise removal process skews the ground truth error
distribution to make the final SSRLCV model appear worse
than it truly is. This effect is seen when the removal of a small
number of points causes the large variance σ to decrease to a
reasonable amount. The Everest 1024 5-view case, seen in
table 3, has only 31 (only 0.12% of the 24, 901) points which
cause the variance to increase an order of magnitude. This
shows the importance of successive filtering, as these points
should be removed during the filtering step. Similar results
can be seen with a 2-view 4096 Everest case, thus successive
filtering is necessary for all cases.

Errors to the ground truth are close in SSRLCV 2-view cases
but not in VSFM 2-view cases. In fact, some VSFM cases
fail to generate 3D point clouds because camera parameters
cannot be accurately determined; this can be seen in table
3. These errors are visualized in figures 9 and 10 where the
reconstructed points hug the ground truth. Overall, SSRLCV
is both more dense and more accurate than VSFM. VSFM
produces no noise in any model, but does so at the expense of
generating dense points. SSRLCV generates as many points
as possible and allows the user of the pipeline to filter points
at any stage. The benefit of such a design choice is accuracy,
but the propagation of erroneous points into further stages
of the pipeline can have tremendous consequences; this is
explored in the next section.

The reconstructions from simulated Everest imagery work
quite well, though an unexpected result was the larger er-
rors at the peaks and higher altitudes as seen in figure 11.
The figure also shows how the errors closer to the ground
surface are better; this may be partially explained by the
fact that the imagery used to perform the reconstruction is
higher resolution than the Shuttle Radar Topography Mission
(SRTM) which was used to compute the ground truth. This
may also be explained by the fact that accurate regions tend to
be more dense and not contain low density regions. The tips
of the mountain contain regions of very low density and may
be contributing to the error. VSFM produces a very sparse
cloud at all locations, with almost no points at the sparse high
altitudes of SSRLCV.

Bundle Adjustment

To test the Bundle Adjustment, noise was added to camera
parameters so that the optimization could be observed. The
Bundle Adjustment does improve the linear error of the point
cloud but seems to get stuck in local minima. It is important to
note that points and position estimation cannot be decoupled
in the real world usage of MOCI, thus pointing estimation
and position estimation are always considered together. Error
values in position are from Simplified General Perturbations
4 (SGP4) and Two Line Elements (TLEs) positions, which
can diverge from the true location by up to 1 km a day [15].

Iterations can be seen in graphs 12 and 13, where noise was
added as described in table 4. Convergence in not always
guaranteed, which could be caused by some of the following
issues: improper definitions of error functions (perhaps the
functions are not properly designed for convex optimization),
floating point error associated with camera parameters, errors
associated with the discrete approximation of the gradient and
Hessian, or an elusive bug.

Image size is not a contributor to bundle adjustment conver-
gence; the largest factor seems to be the error values that are
given as noise parameters. When the noise parameters are
large, they result in a less optimal starting position for the
bundle adjustment. Poor starting locations can be seen at the
top of graph 12, where only 1

7 tests converged. On the other
hand, locations at the bottom of the graph converged in 2

3
cases. The 4096 case is similar, where lower errors converged
but only some higher errors converged. However, because the
sample size is small, these tests may not indicate any overall
trend, though it is expected that noise closer to the real camera
parameters should make convergence easier.

6. PIPELINE TIMING
The execution times of various pipelines in SSRLCV depend
on the number of input images. More precisely, the exe-
cution times are bottlenecked by feature generation, feature
matching, and bundle adjustment. Triangulation, filtering,
and point normal estimation all occur very quickly. File IO is
fast and not a major factor in execution time; it is essentially
negligible. The tests seen in table 5 were run on an Nvidia
TX2i.

The MOCI mission is expected to process datasets which are

9

Dataset Res V. SSRLCV
Avg. Dist

σSSRLCV NSSRLCV VSFM
Avg. Dist

σV SFM NV SFM

Everest 1024 2 114.603 m 186.709 11, 768 288.296 m 315.317 1, 797
Everest 1024 3 53.8238 m 531.069 13, 131 142.311 m 198.477 5, 993
Everest 1024 5 149.08 m 2842.87 24, 901 78.4359 m 159.465 7, 747
Everest∗ 1024 5 55.3631 m 135.74 24, 870 − − −
Everest 4096 2 57.2854 m 1486.79 73, 376 165.679 m 220.515 1, 655
Everest∗ 4096 2 47.2689 m 126.547 73, 233 − − −
Rainier 1024 2 178.548 m 2260.29 12, 888 failed failed failed
Rainier 1024 3 135.168 m 793.099 13, 357 failed failed failed
Rainier 1024 5 121.992 m 481.374 24, 005 263.361 m 368.128 224
Rainier 4096 2 101.204 m 2322.29 154, 280 failed failed failed

Table 3. Initial reconstructions, compared by average error to the ground truth and the sigma value of the error distribution.
The number of points in the clouds is also provided. Cloud Compare’s Iterative Closest Point (ICP) implementation was used

to calculate the errors shown above. In some cases VSFM failed to produce a point cloud. Results with a ∗ were manually
filtered after automatic filtering to show the ideal results of SSRLCV (VSFM results require no filtering and are thus already

ideal and marked with ”− ”; results in the row above should be used to compare).

Figure 9. A 2-view 4096 × 4096 SSRLCV Everest reconstruction compared to the ground truth model.

closest to the Everest 4096 and Rainier 4096 sets used in table
5. The tests above indicate that MOCI’s operations may take
anywhere from 35 minutes to 1.4 hours. The sets above were
selected because they are expected to yield best and worst
case results for timing. The Everest dataset represents a best
case computation for MOCI, where the low contrast of the
snowy grey mountains would produce fewer features than the
green high contrast Rainier dataset. One should note that the
number of points in the point cloud is the same as the number
of matches not filtered. The point number comparison of
Rainier and Everest in table 3 shows that the Rainier dataset
generated about 2.1×more points than the Everest dataset. A
common MOCI dataset will be somewhere in between these
two examples.

The primary bottlenecks of the MOCI pipeline are Bun-
dle Adjustment, Feature Matching, and Feature Generation.
MOCI will likely not be capable of running a full pipeline at
once, the payload will likely have to shut down and restart
the pipeline at a given stage. Feature generation can be
checkpointed after each image’s features are generated. Bun-
dle Adjustment can be checkpointed after each Newtonian
iteration. Matching cannot currently be checkpointed, though
it is possible to do by adding on to the existing SSRLCV
library.

10

Initial
Error

1σ Starting
Error

Ending
Error

Agv.
Iter.

Avg.
Good
Iter.

Avg.
Good
Result

Success

Everest 1024, 2 View, 10 tests at 200 max iterations
6.9021 x± 250 m

y ± 250 m
z ± 250 m
θx ± 0.00053
θy ± 0.00053
θz ± 0.00053

1354.9344 924.0120 65 85 13.1173 30%

Everest 4096, 2 View, 5 tests at 200 max iterations
506.7010 x± 250 m

y ± 250 m
z ± 250 m
θx ± 0.00053
θy ± 0.00053
θz ± 0.00053

3776.0946 2399.1825 51 85 621.0281 60%

Table 4. Initial bundle adjustment results where a noise vector is added to the camera parameters of one view in the set. Noise
is added where the mean value is µ = 0 and σ is defined as a positive and negative range. Error values are measured in

Average Linear Error, mentioned in section on bundle adjustment in chapter 4. Each row was repeated several times with
random noise added within the specified parameters. Successes, measured in the right hand column, are tests that reach within

2× the global optima.

Dataset Res Views Feat. Mat. Tri. Filt. B.A. Total
Everest 1024 2 27.045 s 47.421 s 0.121 s 0.635 s 115.02 s 199.69 s
Everest 1024 3 40.365 s 176.556 s 0.155 s 2.852 s − 230.043 s
Everest 1024 5 66.994 s 436.103 s 0.285 s 3.28 s − 699.498 s
Everest 4096 2 352.404 s 1091.193 s 0.61 s 3.28 s 699.498 2156.436 s
Rainier 1024 2 26.692 s 40.238 s 0.101 s 0.622 s 110.4 s 183.92 s
Rainier 1024 3 40.374 s 157.101 s 0.165 s 2.768 s − 210.058 s
Rainier 1024 5 67.558 s 413.127 s 0.276 s 5.188 s − 495.883 s
Rainier 4096 2 389.809 s 3309.492 s 1.189 s 6.601 s 1443.502s 5159.922 s

Table 5. Runtimes for given sections of the pipeline on given datasets. Bundle adjustment was limited to 10 iterations and
only tested on 2-view cases. In cells marked with ”− ” no bundle adjustment was run. Total runtime is listed on the right and

may be slightly more than the individual sum due to small operations between pipeline stages. The total time also includes
seed image feature generation. The same seed image was used for all tests (it runs in ≈ 9.448 seconds).

Figure 10. A 5-view 1024 × 1024 VSFM everest
reconstruction compared to the ground truth model.

Hardware Experiments

Individual cores can be shut off with the command sudo
nvpmodel N where N is a mode number defined in table

Figure 11. A 2 view reconstruction of 4096 x 4096 images
of Mount Everest simulated at a 400 km ISS-like orbit; here
the red points represent points with errors to the ground truth
at or above 300 meters; the yellow represents errors around

150 meters and light teal color represents errors approaching
zero.

6. The goal of initial experiments is to identify where the

11

Figure 12. 10 bundle adjustment tests run with noise from
table 4; the values graphed here show the first tests in the

table.

Figure 13. 5 bundle adjustment tests run with noise from
table 4; the values graphed here show the second tests in the

table.

CORGI / TX2 / TX2i system will have significant power
usage. Thermal properties are not modeled, but could be
modeled at a later date by repeating these tests in the UGA
SSRL’s thermal vacuum chamber. Power is measured instead
of thermal output because any non-vacuum measurements
of thermal output will be inaccurate. Power, however, is
directly correlated with thermal output and can be used to
refine thermal models of the computation unit. For example,
one could assume a 100% power to heat conversion to obtain
worst case thermal models from the data below.

The computer vision pipeline is run in these different power
configurations with various inputs. Additionally, it is required
by the MOCI mission that the payload does not exceed a
certain wattage, namely the wattage of MAX-Q. Because the
Jetson TX2 has built-in utilities to monitor power consump-

tion, the power consumption was able to be directly moni-
tored in an idle state. A logger is provided with the SSRLCV
software which can monitor state transitions, voltage, current,
and power consumption over time. Idle computation level
is included and a CSV file is generated as the result of the
program. Average power consumption lies at 3.195 Watts and
peak power consumption is always below 8 watts.

Figure 14. A 5-view reconstruct of 1024 × 1024 images of
Everest showing the power consumption in milliwatts of the
GPU, SOC, and CPU over the time the pipeline is executing.

Tested on a development TX2.

Figure 15. A 2 view reconstruction with 4096 × 4096
images of Everest showing the power consumption in

milliwatts of the GPU, SOC, and CPU over the time the
pipeline is executing. Tested on a development TX2.

The power graphs seen in 14 and 15 show the computer vision
pipeline over time. The graphs track the power usage in
milliwatts of the 3 primary systems on the Tegra, the SoC, the
GPU, and the CPU. It is important to note that 14 and 15 do
not contain bundle adjustment calculations in their pipelines.
The six power spikes at the beginning of the pipeline in 14
are the result of feature generation; one spike is from the
seed image and the other five spikes from the main images.
Surprisingly, feature generation, not matching, is the most
power intensive. The flat sustain of GPU usage comes from
filtering and triangulation. The CPU power usage tends to
spike during memory transfers to and from the GPU while
the SoC power usage tends to remain constant. The graphs
14 and 15 were generated from the TX2 and not the TX2i.

The TX2i produces power results that are almost identical to
those of the TX2. These can be seen in graphs 16 and 17,
but are about a Watt higher at the feature generation peaks.
These results are promising, especially when considering
the timing seen in table 5. Whereas Bundle Adjustment or
Feature Matching may have initially seemed to be the most
intensive sections of the pipeline, when considering power
usage, Feature Generation emerges as the primary thermal,
power, and temporal constraint. Matching and Bundle Ad-
justment, though they will run longer on average than Feature

12

Mode Name Denver 2 Hz ARM A57 Hz GPU Hz
0 Max-N 2 2.0 4 2.0 1.3
1 Max-Q 0 - 4 1.2 0.85
2 Max-P Core-All 2 1.4 4 1.4 1.12
3 Max-P ARMv8 0 - 4 2.0 1.12
4 Max-P ARMv8 1 - 4 2.0 1.12

Table 6. Power Modes for the TX2 / TX2i

Figure 16. A 5-view reconstruction of 1024 × 1024 images
run on the TX2i, the intended computation unit for the

MOCI satellite, showing power usage over time. The power
usage is almost identical to that of the TX2. Power

consumption in milliwatts of the GPU, SOC, and CPU over
the time the pipeline is executing.

Figure 17. A 2-view reconstruction of 4096 × 4096 images
run on the TX2i, the intended computation unit for the

MOCI satellite, showing power usage over time. The power
usage is almost identical to that of the TX2. Power

consumption in milliwatts of the GPU, SOC, and CPU over
the time the pipeline is executing.

Generation, use less than half of the power. Thus, Matching
and Bundle Adjustment will deplete MOCI’s batteries at a
slower rate and generate a less intense thermal load.

APPENDICES

A. CODE AND RESOURCES IN THIS PAPER
The resources used in this paper can be requested at any
point by contacting the authors of this paper or visiting the
SSRL Software page at http://smallsat.uga.edu/
software. The computer vision software demonstrated
here, known as SSRLCV, is open source and is available on
github at https://github.com/uga-ssrl/SSRLCV.
To see sample data, generate more sample data, or for detailed
instructions on how sample data is obtained see
https://github.com/uga-ssrl/SSRLCV-Sample-

Data

ACKNOWLEDGMENTS
The authors would like to thank the Georgia Space Grant
Consortium for funding these GPU research projects and the
Air Force Research Laboratory’s University Nanosat Pro-
gram for giving us tremendous opportunities and for funding
the projects that led us to this point. The authors would also
like to thank Hollis (Nicholas) Neel and Aaron Martinez for
helping with checking the math in this paper. A special thank
you to Roger Hunter for helping the UGA SSRL over all these
years.

REFERENCES
[1] C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and

D. Cotten, “Towards an integrated GPU accelerated SoC
as a flight computer for small satellites,” in 2019 IEEE
Aerospace Conference. IEEE, Mar. 2019. [Online].
Available: https://doi.org/10.1109/aero.2019.8741765

[2] C. Adams, “High performance computation with small
satellites andsmall satellite swarms for 3d reconstruc-
tion,” Master’s thesis, The University of Georgia, Uni-
versity of Georgia, Athens, GA 30602, United States, 5
2020.

[3] “Technology horizons : a vision for air force
science and technology 2010–30,” 2010. [Online].
Available: http://www.defenseinnovationmarketplace.
mil/resources/AF TechnologyHorizons2010-2030.pdf

[4] R. I. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd ed. Cambridge University
Press, ISBN: 0521540518, 2004.

[5] A. J. Rossi, “Abstracted workflow framework with
a structure from motion application. thesis,” 2014.
[Online]. Available: https://scholarworks.rit.edu/theses/
7814

[6] R. T. Collins, “A space-sweep approach to true multi-
image matching,” in Proceedings CVPR IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, Jun. 1996, pp. 358–363.

[7] A. Baumberg, “Reliable feature matching across widely
separated views,” in Proceedings IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2000
(Cat. No.PR00662), vol. 1, Jun. 2000.

[8] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W.
Fitzgibbon, “Bundle Adjustment — A Modern Syn-
thesis,” in Vision Algorithms: Theory and Practice,
ser. Lecture Notes in Computer Science, B. Triggs,
A. Zisserman, and R. Szeliski, Eds. Springer Berlin
Heidelberg, 2000, pp. 298–372.

13

http://smallsat.uga.edu/software
http://smallsat.uga.edu/software
https://github.com/uga-ssrl/SSRLCV
https://github.com/uga-ssrl/SSRLCV-Sample-Data
https://github.com/uga-ssrl/SSRLCV-Sample-Data
https://doi.org/10.1109/aero.2019.8741765
http://www.defenseinnovationmarketplace.mil/resources/AF_TechnologyHorizons2010-2030.pdf
http://www.defenseinnovationmarketplace.mil/resources/AF_TechnologyHorizons2010-2030.pdf
https://scholarworks.rit.edu/theses/7814
https://scholarworks.rit.edu/theses/7814

[9] B. Zitova and J. Flusser, “Image registration methods:
a survey,” Image and vision computing, vol. 21, no. 11,
pp. 977–1000, 2003.

[10] H. Kuuste, T. Eenmaee, V. Allik, A. Agu, and R. Vendt,
“Imaging system for nanosatellite proximity opera-
tions,” Proceedings of the Estonian Academy of Sci-
ences/#/Proceedings of the Estonian Academy of Sci-
ences, vol. 63, no. 2, pp. 250–257, 2014.

[11] D. G. Lowe, “Object recognition from local scale-
invariant features,” in Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, vol. 2. Ieee, 1999, pp. 1150–1157.

[12] ——, “Distinctive image features from scale-invariant
keypoints,” International journal of computer vision,
vol. 60, no. 2, pp. 91–110, 2004.

[13] I. R. Otero and M. Delbracio, “Anatomy of the sift
method,” Image Processing On Line, vol. 4, pp. 370–
396, 2014.

[14] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense cor-
respondence across scenes and its applications,” IEEE
transactions on pattern analysis and machine intelli-
gence, vol. 33, no. 5, pp. 978–994, 2011.

[15] D. Vallado, P. Crawford, R. Hujsak, and T. Kelso, “Re-
visiting spacetrack report #3: Rev 2,” Astrodynamics
Specialist Conference, 2006.

B. BIOGRAPHY

Caleb Adams Caleb Adams was the
co-founder of the UGA Small Satellite
Research Laboratory, which now has 2
satellite missions. Caleb has a Masters
in Computer Science from UGA and now
works as a Civil Servant at NASA’s Ames
Research Center where he helps develop
Distributed Spacecraft Autonomy and
Aerial Perception systems. His research
focuses on small satellites, distributed

computing, and perception systems.

Jackson Parker Jackson Parker re-
ceived his M.S. in Electrical and Com-
puter Engineering in spring of 2020
from the University of Georgia, during
which he acted as Payload Software Ar-
chitect and Systems Engineer for the
MOCI mission. Currently, he works at
NASA Ames Research Center helping the
Payload Accelerator for Cubesat Ende-
vors group design and develop highly

robust flight software.

David Cotten David L. Cotten, Ph.D.,
received a B.S in Physics from Louisiana
State University in 2005. He currently
serves as the manager and Co-PI of the
UGA’s Small Satellite Research Labora-
tory and is an Assistant Research Sci-
entist at the Center for Geospatial Re-
search in the Geography Department at
UGA. He graduated from UGA in 2011
with his doctorate in Physics and As-

tronomy. His research as a Post-Doctoral Associate focused
on surface-atmosphere exchange, and he is currently using

remote sensing (multispectral/hyper spectral sensors) and
micrometeorology techniques to quantify carbon storage in
wetland regions at both the local and regional scales. Dr.
Cotten is also using unmanned aerial vehicles, air photos,
and satellite imagery to build 3D models of terrestrial objects
using photogrammetric Structure from Motion.

14

	Introduction
	Feature Detection, Extraction, and Matching
	Triangulation and Reprojection
	Bundle Adjustment
	Initial Results
	Pipeline Timing
	Appendices
	Code and Resources in this Paper
	Acknowledgments
	References
	Biography

