
High Performance Computation with Small Satellites and

Small Satellite Swarms for 3D Reconstruction

by

Caleb Ashmore Adams

(Under the Direction of Dr. Ramviyas Parasuraman)

Abstract

In this thesis research I discuss the design and implementation of 2 Earth observation

Cube Satellites with a focus on the computational methods used and the design of their

computer systems. The satellite computer systems are tested by simulating imaging of

single view observations and multiview observations. Observations are simulated by imaging

existing 3D models of the Earth’s surface in 3D rendering software. A custom computer vision

library, known as SSRLCV, is used to compute the final 3D models which are then compared

to the ground truth. Restrictions, unique to the space environment, are mitigated with a

specialized operating system, hardware, and software. Tests are run on the Nvidia TX2 and

TX2i with timing, state, and power usage tracking. The Nvidia TX2i GPU accelerated SoC is

modified for use in a Cube Satellite and is used as the platform for high performance onboard

computation. The results show accurate 3D reconstruction of the surface of Earth feasible

within 15 to 100 meters, depending on the camera system and altitude, while maintaining

favorable power usage and computation time.

Index words: Small Satellites, Cube Satellites, Computer Vision, System on a Chip,
Graphics Processing, Edge Computing, 3D Reconstruction, Digital
Elevation Models, Remote Sensing, Satellite Swarms

High Performance Computation with Small Satellites and

Small Satellite Swarms for 3D Reconstruction

by

Caleb Ashmore Adams

B.A. Bachelors of Science in Computer Science, University of Georgia, 2018

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Masters of Science

Athens, Georgia

2020

c©2020

Caleb Ashmore Adams

All Rights Reserved

High Performance Computation with Small Satellites and

Small Satellite Swarms for 3D Reconstruction

by

Caleb Ashmore Adams

Approved:

Major Professors: Ramviyas Parasuraman

Committee: David Cotten
Michael E. Cotterell
WenZhan Song

Electronic Version Approved:

Ron Walcott
Interim Dean of the Graduate School
The University of Georgia
May 2020

High Performance Computation with Small

Satellites and

Small Satellite Swarms for 3D Reconstruction

Caleb Ashmore Adams

April 30, 2020

Acknowledgments

In late 2015 when I started the journey to crowdfund a cube satellite I had no reasonable

expectation of success. If it were not for the arduous work and inordinate dedication of my

peers and mentors I would not be here today. At the start, those individuals were Hollis

(Nicholas) Neel and Ryan Babaie. I also have Graham Grable, Paige Copenhaver, Megan

Le Corre, Kenny Cochran, Khoa Ngo, Paul Hwang, Nirav Ilango, Adam King, Trent Walls

and Jaicob Stewart to thank for their dedication in growing our team and helping write

the proposals for SPOC and MOCI. A big thank you to Bob Pickney, who gave our group a

place to work in the Entrepreneurship building and listened to our crazy dream in those early

days. I thank the countless students who have dedicated their time to the UGA SSRL over

the years and have helped shape it into what it is today. Thank you Dr. Marshall Shepherd

for connecting our student team with the faculty at the Center for Geospatial Research.

Without Dr. David Cotten, who spearheaded our integration with the research apparatus

of UGA, the SSRL would be little more than a student club. David, thank you for dealing

with my hard headed nature over these years; I am happy to call you a friend and mentor.

Thank you to Dr. Deepak Mishra, who was willing to build the SSRL into more than just

a student organization with David. Thank you Roger Hunter for being a friend and mentor

and helping the UGA SSRL feel welcome in the NASA community. I cannot express my

gratitude enough to those at the University Nanosatellite Program who took a chance on

giving us the funding and taught me everything I know about space systems. Thank you

1

Jeff, Sarah, Shivani, Kate, Kyle, Cammi, Van, Lee, and Jesse; without your guidance I would

not be where I am today. Thank you Hollis, Katie, James, Jack, Mary, Casper, and Kaelyn

for pushing the SPOC mission to the end. Thank you Jackson, Alex Lin, Alexander, Alex

Holmes, Justin, Allen, Godfrey, and Matt for ensuring that MOCI continues to succeed in

UNP. Thank you Jackson, Aaron, and Hollis for helping develop the technologies to enable

MOCI with me. Thank you Dr. Cotterell for being so supportive to your students; I am

happy to have started computer science in your classes and to end with you as an advisor.

Thank you Dr. Ramviyas for being so supportive, allowing me to feel at home in the HeRo

lab, and helping me focus on this thesis. Thank you to my family, who supported me over

these years and helped me proofread this thesis; I love you guys. Lastly, thank you Julie -

you probably want me to stop writing this thesis by now.

2

Contents

Acknowledgments 1

1 Introduction 9

1.1 The Cube Satellite and Access to Space . 12

1.2 Planetary Observation from Satellite Platforms 14

1.3 Computation in Space . 17

2 Small Satellite Systems 19

2.1 Systems and Subsystems Requirements . 19

2.2 The Spectral Ocean Color Satellite . 21

2.3 The Multiview Onboard Computational Imager Satellite 25

3 Design and Architecture of Space Computation 29

3.1 The SSRL CORGI/TX2i . 29

3.2 Space Operating Linux . 38

4 Onboard Computer Vision 41

4.1 Role of Systems Dynamics . 42

4.2 Camera Systems . 43

4.3 Feature Detection, Extraction, and Matching 47

4.4 3D Reconstruction . 55

3

4.5 Bundle Adjustment . 66

5 Distributed Computation with Satellites 75

5.1 Networking Assumptions . 76

5.2 Satellite Swarm Architecture . 77

6 Experiments and Results 81

6.1 Initial Feasibility with VSFM . 82

6.2 SSRLCV Simulations with Blender . 91

6.3 Pipeline Timing . 104

6.4 Hardware Experiments . 105

7 Conclusion 109

7.1 Limitations of Experiments . 112

7.2 Publicly Released Software . 113

7.3 General Considerations for In-Orbit 3D Reconstruction 113

4

List of Figures

1.1 NASA budget over time . 10

1.2 Launches per year . 11

1.3 Various cube satellite sizes . 14

1.4 3D mapping mission timelines . 16

1.5 Cube satellite size comparison . 17

2.1 Mission development timeline . 20

2.2 SPOC payload overview . 22

2.3 The SPOC satellite . 23

2.4 The Concept of Operations . 24

2.5 The MOCI satellite . 26

2.6 MOCI’s optical system . 27

3.1 SSRL CORGI TX2/TX2i interface board . 30

3.2 CORGI Board Schematic . 31

3.3 TX2 exposed with no TIM . 36

3.4 TX2 exposed with TIM . 37

3.5 TX2 exposed with TPP and TIM . 37

3.6 TX2 exposed with TPP and no TIM . 38

4.1 Radial distortion cases . 45

5

4.2 Matched point locations . 48

4.3 Image gradients of Mount Everest . 49

4.4 The epipolar line . 51

4.5 Line generation and reprojection . 56

4.6 Nview triangulation . 61

4.7 Camera derivatives . 71

4.8 Ideal error functions . 74

5.1 Swarm join multicast . 78

5.2 Cooperation scenarios . 80

6.1 Cloud reconstruction 1 . 85

6.2 Cloud reconstruction 2 . 87

6.3 Simple geometry simulation . 87

6.4 Initial VSFM reconstruction 1 . 88

6.5 Initial VSFM reconstruction 2 . 88

6.6 Dense subpixel distributions . 89

6.7 Stereo disparity of Mount Everest . 90

6.8 ASTER GeoTIFF to PLY . 91

6.9 Mount Everest Multiview Imagery . 92

6.10 Orbital angle diagram . 93

6.11 2 view noise visualization . 96

6.12 N-view noise visualization . 97

6.13 Average Linear Error for 2 and N-view . 98

6.14 Visualization of reconstruction accuracy compared to truth 100

6.15 2 view reconstruction with truth measurements colored 101

6.16 Bundle adjustment graphs . 103

6

6.17 TX2 5-view power usage over time 1 . 106

6.18 TX2 2-view power usage over time 2 . 107

6.19 TX2i 5-view power usage over time . 108

6.20 TX2i 2-view power usage over time . 108

7.1 SSRLCV’s MOCI pipeline . 112

7

List of Tables

1.1 Various Cube Satellite Specs . 13

3.1 Recommended Dunmore Aerospace Satkit parts 34

6.1 Dense SIFT error distribution values . 90

6.2 Slew times for image acquisition . 95

6.3 Average linear error with variable noise . 97

6.4 Point density with variable noise . 98

6.5 3D reconstruction accuracy . 100

6.6 Bundle adjustment results . 102

6.7 Pipeline runtimes . 104

6.8 Nvidia TX2 / TX2i power modes . 105

8

Chapter 1

Introduction

During the early years of space exploration, advancements in computer technologies paral-

leled, and in some cases even surpassed, terrestrial advancements. Though the first transistor,

the point contact transistor, was developed at Bell Labs in 1947, it took over a decade to

develop the technology for practical uses [1]. In 1959 Bell Labs developed a new design,

the Metal Oxide Semiconductor (MOS) Field Effect Transistor (FET), which rendered small

scale Integrated Circuits (IC)s viable [2]. In 1958, in a response to the launch of the Sputnik

satellite, the National Aeronautics and Space Administration (NASA) was formed. During

what is now known as the Apollo Era, president John F. Kennedy famously orated NASA’s

goal to land a human on the Moon and bring them back safely. Among many others, one

of the most significant challenges for this goal would be to develop the Apollo Guidance

Computer (AGC). The AGC was the first computer in history to use silicon ICs; it was im-

plemented entirely with 3 input NOR gates produced by Fairchild Semiconductor, marking

a monumental shift in computer history.

Famously, the Space Race ushered in a spike in funding for science, technology, engineer-

ing, and mathematics in the United States of America. Though NASA’s funding peaked in

1966 during the Apollo program, the USA continued to see benefits from these advancements

9

Figure 1.1: The NASA budget in Nominal Dollars, 2014 constant dollars (to adjust for
inflation), and as a percent of the federal budget.

for many decades. Near the end of the Cold War, and certainly after the fall of the USSR

in 1991, space exploration in the USA shifted towards a focus on sustainability, reusability,

and robotic exploration. Human exploration was limited to the construction of the future

International Space Station (ISS).

The ISS has become invaluable to the space research community. The completion of the

ISS in 2011, though one could argue it was complete enough by 2001, has enabled unprece-

dented commercial and academic access to space research. The invention of the cube satellite

in 1999 [3] and the advent of a usable space station can be thought of as the early enablers

of what has now been termed New Space [4]. New Space is also characterized by an increase

in launches to space (for the first time since the founding years of NASA) starting in the

early 2000s. With increasing access to space via the space station, more and more hardware

and software experiments were performed. Cube satellites, which certainly benefited from

this increased access to space, grew symbiotically with the smartphone industry in the early

2000s - a trend of miniaturization that continues to this day.

Historically, burdensome communications constraints and poor onboard computational

10

Figure 1.2: Total launches into space per year, after 1951.

power have forced satellite missions to focus on raw data generation. Though satellite

sensors and instruments continue to improve, large sets of raw data are still transmitted

back to ground operators on Earth to be analyzed [5]. This causes missions to transmit

large amounts of data that may later go unused. Oftentimes the end products generated from

such data are magnitudes smaller than the data as a whole. With the advent of commercial

Internet of Things (IoT) devices, the improvements in smartphone computation, and the

rise of the small satellite as a viable space platform, it is likely time to significantly rethink

in-space computation. In the industry this is known as edge computation - generating useful

information at the location where the data is collected. Only recently have new methods

for extracting valuable data at the edge been explored, but these methods are traditionally

deployed on terrestrial commercial electronics [6][7]. This research seeks to develop and

explore edge computation with small satellites.

The solutions proposed within this research center around the development and use of a

GPU accelerated System on a Chip (SoC) cubesat computer and the algorithms needed for

their operation. The primary use of this computer system is to perform in situ Computer

11

Vision and Neural Network training onboard a cube satellite. Currently, the system is meant

to be paired with a standard primary flight computer. The satellite computer system is to

be tested by simulating imaging of single view observations, multiview observations, and

swarm observations. In addition to hardware and architecture, benchmarks of performance

will be measured by how well the system performs these observations.

1.1 The Cube Satellite and Access to Space

The Cube Satellite was jointly developed in 1999 by Cal Poly and Stanford, but the standards

which define the weight of cube satellites are determined by the launch providers and the

deployer manufacturers. Thus, over the years several standards have evolved based on the

specifications of deployers and launch providers [3]. In many ways the Cubesat standards

are, in the words of Hector Barbossa, ”more what you’d call ‘guidelines’ than actual rules.”

These rules are released as public documents and CAD (Computer Aided Design) drawings

within Interface Control Documents (ICD)s or Interface Definition Documents (IDD)s by

the aforementioned organizations. To increase the likelihood of launch and to appeal to

the maximum number of launch providers, most cube satellite developers begin by taking

the strictest set of requirements from all available requirements to create the strictest set

of guidelines to follow. Generally, cube satellites are built up of cube-like units where each

unit, 1U, is generally 10cm × 10cm × 10cm and 1.33kg in mass. Additional units (1.5U, 2U,

6U) are not simply multipliers of a 1U as one might expect. Table 1.1 shows the variations

of deployer specifications.

The most appealing property, and also the defining property, of the small satellite (i.e.

the cube satellite) is its mass. A low mass is appealing because mass is the fundamental

limitation when launching anything into space. Rockets, like you and I, obey the conservation

of momentum; they are able to apply a net force to themselves by ejecting mass (rocket fuel)

12

Organization Deployer 1U mass 3U mass 6U mass 1U size 6U size
Cal Poly [8] [9] [10] PPOD 1.33 kg 4.00 kg 12.00 kg 10cm×

10cm×
11.35cm

22.63cm×
10cm×
36.6cm

NanoRacks [11] NRCSD 2.40 kg 4.80 kg 8.40 kg 10cm×
10cm×
11.35cm

22.7cm×
10cm×
34.05cm

Rocket Labs [12] MAXWELL 2.0 kg 5.5 kg 11.00 kg 10cm×
10cm×
11.35cm

22.63cm×
10cm×
36.6cm

Table 1.1: Variation on the Cube Satellite specifications.

at high speeds. The ideal rocket equation (1.1) considers that, in order to launch a payload

of mass mp from a rocket of mass mr, one must also consider the mass of the propellent

used to launch the payload, the velocity of the desired orbit, and the exhaust velocity of the

engine ve. The mass of the rocket filled with fuel can be considered mf and the system’s

change in velocity to achieve the new orbit is ∆v. The rocket equation is logarithmic and

adding a small amount of payload mass drastically changes the final ∆v, and therefore the

final orbit.

∆v = veln

(
mf

mp +mr

)
(1.1)

Launch providers operate within very strict mass tolerances for two primary reasons: to

maximize fuel efficiency and to insure that the primary payload can achieve its desired orbit

within certain bounds, often achieved with counter and dummy weights. Small satellites

and cube satellites have historically been hitchhikers and were given launch opportunities

only if the impact of their mass on the total rocket system was within a small tolerance. In

some cases this additional mass is beneficial for launch providers, filling space that would

13

Figure 1.3: Various cube satellite sizes

otherwise be used for counterweights with paying customers. This means that cube satellite

orbits are restricted to the desires of the primary payload. Most launches go into orbits

which are classified as Low Earth Orbit (LEO) for ISS resupply and earth observation. All

cube satellites, with the exception of the two MARCO martian cube satellites, are in earth

orbit. Of those within earth orbit almost all are within LEO. LEO is classified as any orbit

with an altitude of less than 2000km, for reference the ISS orbits at about 400 km.

1.2 Planetary Observation from Satellite Platforms

It is helpful to visualize an Earth observation satellite as a point projecting a rectangle, with

rays extending like a pyramid onto the surface of the globe. Now consider the terms nadir,

ground-track, cross-track, swath, and in-track. Nadir refers to the vector pointing directly

”below” the satellite towards the Earth. Ground-track is the path that the satellite traces on

the globe as it looks nadir. Cross-track is a direction, perpendicular to a ground track, of the

projected pyramid on the globe. A satellite’s swath is the measurement of this cross-track.

In-track refers to the area the satellite observes as it covers area along the ground-track while

14

orbiting.

1.2.1 Optical Systems

There are two distinct optical systems relevant to this research: monochromatic imaging and

multispectral imaging. Put simply, monochromatic imaging aggregates all wavelengths of

light which enter the sensor into values of total intensity per pixel while multispectral imaging

seeks to categorize different wavelengths of light into regions of intensities (the RBG cameras

in our smartphones are examples of this).

Image resolution is measured with Ground Sample Distance (GSD), which represents the

size of a single pixel on the ground. For example, if an image has a GSD of 1 meter and a

resolution of 1024 × 1024 pixels, then the image covers an area of 1024m2. For a standard

imaging system, one which is projective, this is a simple measurement of triangulation.

1.2.2 Global Digital Elevation Models

Digital Elevation Models (DEM)s are 3D models of a terrain’s surface. Remote sensing lit-

erature also commonly mentions Digital Surface Models (DSM)s and Digital Terrain Models

(DTM)s. The differences between these are purely semantic, at least to the engineer or

computer scientist, and this research will thus use them interchangeably. Historical refer-

ence DEMs will include those generated by SPOT 5, DAICHI (ALOS), CARTOSat-1, and

SRTM. Datasets will be prioritized first by public availability, and then by locational accu-

racy. Some datasets must be purchased. Note that the SRTM, radar based from the Space

Shuttle, is a common source of elevation data, but is aging.

Figure 1.4 shows other satellites gathering DEM data contemporary with MOCI’s life-

time. These can provide real-time data for comparison during the future lifetime of MOCI

experiments. ASTER, a payload on the TERRA satellite, is a significant source of publicly

15

Figure 1.4: Other missions which produce digital terrain models, relative to the timeline of
the MOCI satellite.

available DEMs. Note that Calipso will only be used for comparing DEMs of clouds.

1.2.3 Planet’s Dove Constellation

Though traditionally most earth observation satellites have been large satellites, there is

now significant competition from the small satellite world. The company Planet Labs (now

just Planet) is flying a 3U earth observation cube satellite known as the DOVE. Planet has

launched hundreds of these satellites, operating in what they term a ”flock”, over just the past

few years. The orbits of these satellites are much lower than their competitors, meaning they

re-enter the atmosphere much more quickly. This might seem at first to be disadvantageous,

but the cost to launch and operate these cube satellites is minimal compared to the long

development cycles of previous large systems, especially when considering the economics of

scale in production. Additionally, Planet can slowly upgrade their flock with new technologies

on the scale of months to years rather than decades. It is also interesting to consider that

Planet could cover the globe with these satellites; in fact, it is their goal to image the entire

16

Figure 1.5: From left to right: the Mars Reconnaissance Orbiter, the Terra Satellite, a Planet
Lab’s Dove 3U cube satellite

earth at least once every day, something that has never been done before. Essentially, it is

cheaper for Planet to have a factory like production line of small satellites which have 2-3

year lifespans and can cover the globe, rather than to spend 10 years developing a single

satellite which will only see a fraction of the globe and use woefully outdated technologies

by the time it launches.

1.3 Computation in Space

The title of this thesis mentions high performance computation. I by no means wish to imply

that I have put a server grade super computer into space (yet!). The term high performance,

in this case, instead refers to the fact that the systems and methods designed and developed

within this thesis are scalable and written for the same architectures of super computers.

Edge computing, which is the focus of this research, is not typically preferable to centralized

methods when very few edge computers are used. Essentially, this research aids in enabling

the new area of high performance edge computing in space.

There are, however, serious efforts to move towards utilizing server grade supercomputers

17

in orbit, but these efforts are limited to the International Space Station (ISS). The Center

of Space, High-performance, and Resilient Computing (SHREC), a National Science Foun-

dation (NSF) funded multi-university collaboration, focuses on developing such technologies

for demonstration on the ISS. One example, and there are many from this collaboration, is

the Spacecraft Supercomputing for Image and Video Processing (SSIVP) prototype [13].

18

Chapter 2

Small Satellite Systems

Designing a satellite, even a cube satellite, involves many complicated and interdependent

pieces of hardware and software. It is due to this complexity that the study of designing

satellites falls into the interdisciplinary fields of systems engineering and aerospace engineer-

ing. While the focus of this thesis is not on my contributions to the systems engineering of

the satellites at the University of Georgia (UGA) Small Satellite Research Lab (SSRL), it is

important to cover the basics that will be assumed knowledge in further chapters.

2.1 Systems and Subsystems Requirements

The design process of the SPOC and MOCI satellites began, like most satellite missions

do, with the generation of high level mission requirements. From these high level mission

requirements, systems requirements and then subsystems requirements are generated. In

addition to the generation of requirements, satellite systems and space systems typically

have a set of reviews that are intended to increase in complexity and aid in the finalization

and implementation of designs and requirements [14] [15] [16]. At the beginning of the UGA

SSRL the SPOC and MOCI satellites were a single mission, but later diverged thanks to

19

additional funding. In fact, the initial acronym for the MOCI satellite was Mapping and

Ocean Color Imager. After the funding of the SPOC satellite and the subsequent division

of mission objectives, MOCI was renamed and took on the 3D surface mapping mission

objectives while SPOC took on the multispectral coastal imaging objectives. This is a

prime example of how the systems engineering process works and how a focus on high level

objectives can allow for specialization.

Figure 2.1: A typical timeline of cube satellite development

There are many ways to break down the complexity of satellite missions, all of which

involve breaking up primary components into systems and subsystems based on requirements.

At the UGA SSRL we have systems and subsystems as loosely defined in the following

list. All systems, other than the payload, are considered Core Avionics and the payload is

considered mostly isolated from those systems. This is done to eliminate essentially duplicate

work between the MOCI and SPOC missions, though their core avionics do differ slightly.

• OnBoard Computer (OBC): The ”brains” of the cube satellite

• Electrical Power System (EPS): The power distribution and regulation system of

the satellite; solar panels are included

• Batteries: The physical batteries of the satellite, typically with integrated heaters

• UHF Transceiver (UTRX): The transceiver which operates on UHF for commands

and telemetry

• S-Band Transmitter (STRX): The transmitter which operates on S-Band for pay-

load data transmission

20

• Antenna: Antenna which interfaces to the UHF and S-Band systems

• Attitude Determination and Control System (ADCS): The system which pro-

vides position and orientation data as well as actuation and control

• Payload: The primary payload of the mission, the other systems should help this one

function

• Optics: The optical assembly within the cube satellite

• Frame and Housing: The structural and physical components into which the elec-

tronics integrated. It includes thermal and radiation protection measures

During the development process it is common to build what is known as a flatsat. A

flatsat is an engineering test unit which contains engineering level components for each

system / subsystem in the satellite. The flatsat is used to develop and mature hardware and

software for the cubesat.

2.2 The Spectral Ocean Color Satellite

The Spectral Ocean Color (SPOC) Satellite is a 3U cube satellite and the second mission

of the UGA SSRL. The mission is funded via the NASA USIP (Undergraduate Student

Instrument Project) and supported via the NASA CSLI (Cube Satellite Launch Initiative)

and NASA ELaNa (Educational Launch of Nanosatellites) Program. It will be the first

UGA SSRL mission to launch, with an expected launch date around summer 2020. SPOC

has been under development for about 4 years and over that time scores of students have

contributed greatly to significant portions of the mission. I was involved heavily in the initial

creation of the mission, but can take little credit for the success of the optical instrument at

the center of the mission.

21

The SPOC mission is focused around the development of a moderate resolution multi-

spectral sensor. The cubesat is designed to acquire imagery of coastal ecosystems and ocean

color across a wide range of spectral bands within the visible and near infrared. This mis-

sion directly supports NASA’s 2014 strategic goals and objectives, specifically the Strategic

Goal 2 to “advance understanding of Earth and develop technologies to improve the qual-

ity of life of on our home planet” and Objective 2.2 to “advance knowledge of Earth as a

system to meet the challenges of environmental change, and to improve life on our planet”.

The primary sensor is known as SPOCeye, a nod to its similarity to the HawkEye sensor

on the University of North Carolina-Wilmingtion’s SeaHawk cube satellite. The SPOCeye

sensor was developed jointly by UGA and Cloudland Instruments, who also aided in the

development of the HAWKeye instrument.

(a) Ray traces of the
spectral bands in the
SPOCeye optics

(b) A late 2017 iter-
ation of the SPOCeye
optical housing

(c) The electronic of the
SPOCeye instrument

Figure 2.2: The SPOCeye payload (an older 2017 breakup), around which the SPOC mission
was built

The SPOCeye’s sensor, attached at the focalplane of the optical train, is a 752 × 480

CMOS array. The optical train is essentially telescopic in design and spreads wavelengths

between 433− 866 nm across the sensor vertically, resulting in a spectral resolution of 1.042

nm per row. The onboard picozed board, seen in figure 2.2c as the red component, bins

22

4 rows together to create a resultant spectral resolution of 4.16 nm. Additionally binning

after this is optional, though we typically bin further to improve our signal to noise ratio

for given spectral regions. The SPOCeye is limited to only selecting 16 bands at a time

to save. We have defined SPOCeye to be an adjustable multispectral sensor, rather than

a simple multispectral sensor, due to our ability to select any 16 bands within our spectral

range. Furthermore, the sensor operates as a pushbroom scanner and must orient such that

the spectral rows of the SPOCeye are parallel to the cross track and perpendicular to the in

track / flight direction.

Figure 2.3: An expansion of the SPOC satellite, revealing the internal components of the
cubesat.

The majority of the core avionics of the SPOC satellite are commercially available com-

ponents from cube satellite vendors Clyde Space (now AAC Clyde) and ISISpace; these

components can be seen in figure 2.3 along with the primary payload. The mission objec-

tives of the SPOC satellite include monitoring the status of the coastal wetlands, the quality

of estuarine water including wetland biophysical characteristics and phytoplankton dynam-

ics, and the productivity of the near-coastal ocean. Such topics are covered in detail in Hollis

Neel’s thesis on the SPOC satellite [17].

23

To the end user, SPOC operates similar to a finite state machine. The states of the

satellite are called modes and each mode has several sub-modes and transitions. Modes are

designed with two ensure safe operations and to meet the mission requirements with minimal

complications. The modes can be seen in detail in Figure 2.4. Cruise Mode is the nominal

mode of the satellite and is designed as such so that the satellite is always power positive

and in communication over the UHF radio. Scan Mode can be thought of as the data

gathering mode of the SPOC satellite in which the craft performs a pushbroom scan of a

target area. SPOC also contains a simple RGB imager which can be used as a view finder for

geo-referencing imagery and for taking sample imagery. The simple imager is used in Image

Mode, which operates similarly to the scan mode. Data Downlink mode takes advantage

of the S-Band transmitter to downlink higher volumes of data to the SSRL ground station.

Safe Mode is an emergency mode in which the satellite goes into a minimal power state

and uses UHF comms to allow ground operators to debug the craft. An additional mode

known as Deployment Mode is used once in the special case when the satellite is deployed

from the International Space Station. This mode implements NASA required timers, delayed

subsystem powerups, and communications delays until the satellite is far enough away from

the station.

Figure 2.4: The Concept of Operations of the SPOC satellite

24

2.3 The Multiview Onboard Computational Imager Satel-

lite

The Multiview Onboard Computational Imager (MOCI) satellite was the first funded mission

of the UGA SSRL, but will be the second mission to launch. MOCI started design in early

2016 as the Mapping and Ocean Color Imager satellite, essentially combining the SPOC

mission into it. MOCI later evolved to focus purely on in-situ computer vision. MOCI is

funded by the University Nanosatellite Program (UNP) and supported by the Air Force

Research Laboratory (AFRL) and is currently in the late stages of design with assembly

scheduled for Summer 2020.

The MOCI mission will acquire imagery of the Earth’s surface from (Low Earth Orbit)

LEO and perform 3D surface reconstruction at a landscape scale using custom algorithms and

modified off-the-shelf, high performance computational units. The MOCI mission will also

identify and map or image surface objects, including but not limited to coastal environment

phenomena, while training students in STEM-related fields. Efficient data compression,

feature detection, feature matching, and SfM processing techniques of space-based imagery

will be performed on board the spacecraft as a proof-of-concept of high performance, on-

board processing capabilities. 3D models produced by the MOCI satellite will take the form

of Point Clouds and Meshes as their end product for quick data downlink. The secondary

goals of the project will be to lay the foundations for a self-sustaining Small Satellite Research

Laboratory (SSRL) at the University of Georgia (UGA) involving numerous students and

creating a free repository of imagery.

The data collected from MOCI will be processed onboard the satellite within the space

environment and will likely be one of the first of its kind on a small satellite platform.

This involves developing algorithms and technologies capable of detecting and matching

features from multiple images, localizing features in 3D space, and computing accurate depth

25

(a) The 6U MOCI satllite (b) The exposed internals of MOCI

Figure 2.5: The MOCI satellite’s 6U design

from point correspondence. By using high performance processors with these algorithms

the amount of data and time needed to downlink completed data products will be greatly

reduced.These goals align MOCI with the 2010-30 Air Force Science and Technology Horizon

themes that can maximize capability superiority. Our system advances research by helping

shift from Platforms to Capabilities, Control to Autonomy, Permissive to Contested domains,

and Sensor to Information [18].

The internal hardware of the MOCI satellite is very similar to the internal hardware of

the SPOC satellite; the key differences are with the Payload and ADCS systems. In the next

chapter significant attention is given to the GPU SoC system onboard the MOCI satellite.

The MOCI payload also consists of a 3U optical tube designed by RUDA cardinal which

produces 4K imagery at a GSD of approximately 6.5 meters per pixel. The optical system

has a field of view of approximately ±2.4 degrees, which means strict requirements have been

placed on pointing and controls to ensure image overlap is possible for 3D reconstruction.

If image overlap cannot be guaranteed, then 3D reconstruction will not be possible. At the

time of this thesis research, the MOCI ADCS is still undergoing finalization and the results

26

presented here are partially intended to solidify particular pointing requirements. The MOCI

satellite intends to perform slew maneuvers to achieve multiple views of ground targets; the

feasibility of such maneuvers is covered in the results of this thesis. Additionally, alternatives

to slew maneuvers are also demonstrated. Prior to the research conducted here, the efficacy

of particular slew maneuvers, or other satisfactory multiviews needed for 3D reconstruction,

was largely speculation based on prior results from robotics and traditional planetary 3D

reconstruction methods.

Figure 2.6: The optical assembly of the MOCI satellite, taking up 3U of the craft as seen in
2.5b.

The optical system of the MOCI satellite has changed significantly over its several years

of development. The original optical system of MOCI, detailed in chapter 6 of this thesis,

had a 60 meter GSD and only proved feasible for reconstructing objects on the scale of

10 km. The current optical design of the MOCI satellite was developed in a partnership

with RUDA-Cardinal, who are the true optical experts. The system is designed around two

primary imagers that have been used for space applications before. The optical system can

be seen alone in figure 2.6 and integrated into the MOCI satellite in figure 2.5b. The resultant

field of view of the optical system is ±2.4◦ with an effective focal length of 270 mm. The

27

effective focal length differs from the actual focal length in that it is not the true distance

a ray (or photon) takes as it travels through an optical system. The effective focal length

is important because it is used in software when modeling the camera system. The light,

as it approaches the end of the optical tube, is split between an 80/20 beam splitter which

sends 80% of the light to the primary sensor and 20% of the light to a secondary sensor.

The primary sensor of the MOCI satellite is the Imperx C4180, a 4096 × 3072 monochrome

sensor, which can be seen integrated at the far end of the optical tube in figure 2.6. The

secondary camera is the FLIR Blackfly, which is a 648 × 488 RGB imager for use in neural

network tests (not covered here) as well as point cloud coloring. The primary imager results

in a GSD of about 6.5 meters.

28

Chapter 3

Design and Architecture of Space

Computation

During the formative years of the UGA SSRL there were no existing solutions to our com-

putational needs. In late 2016 this caused me to begin exploring methods to accelerate our

onboard computational abilities with teams at the SSRL, which eventually led to the Nvidia

Jetson family of products. The research here outlines the efforts to space rate and qualify

a GPU accelerated SoC for use in LEO and is heavily influenced by my IEEE Aerospace

Paper [19].

3.1 The SSRL CORGI/TX2i

The University of Georgia’s Small Satellite Research Laboratory (SSRL) is utilizing a Nvidia

TX2i Graphics Processing Unit (GPU) within the Multi-view Onboard Computational Im-

ager (MOCI) Satellite. Although the system utilizes a GPU, an additional On Board Com-

puter (OBC) is still required for control and communication with core avionics. The UGA

SSRL has developed a board, the Core GPU Interface (CORGI), that is capable of inter-

29

facing the Nvidia TX1, Nvidia TX2, or Nvidia TX2i into a PC/104+ compliant CubeSat

[20][21][22].

The GPU (Nvidia TX2/TX2i) being used is a complete System on a Chip (SoC), capable

of running GNU/Linux on an ARMv8, with a 256 core Pascal GPU. For an exhaustive list

of TX2/TX2i capabilities see the user guide [23]. Currently, the TX2/TX2i utilizes CUDA

10.0 [23].

Figure 3.1: Me holding a previous iteration (2017 version) of the space ready TX2/TX2i
concept, known as the CORGI (Core GPU Interface).

Additionally, I sought to adhere to the IEEE Std 1156.4-1997 standard for spaceborne

computer modules. This standard provides requirement levels for thermal performance,

pressure, shock, vibration, and radiation [24].

3.1.1 The Nvidia Tegra SoC Family

Unsurprisingly, the Nvidia Tegra product line is primarily intended for use in robotics and

terrestrial edge computing, not in space computation. In fact, when I asked about this on

the Nvidia forums two years ago, I was essentially met with the response, ”Are you actually

trying to do this?” [25]. The motivation is mostly because the Nvidia Tegra product line

has many desirable properties: the CUDA programming language is the most popular GPU

30

programming language for research; it has a widely supported developer base; it is deployed

in many similar terrestrial applications; and it requires less electrical engineering to integrate

onto an interface board. While some accelerated platforms, such as Unibap’s AMD GPU

based computer [26], choose to build their computer architectures more or less from scratch

we have chosen an interface board approach to speed up development time.

3.1.2 Pinout and Interfacing

The definitive pinout of the CORGI/TX2i system has changed drastically over the years,

and I suspect that it will continue to change as it is developed further by students after

me. This section is meant to give an overview on the goals and challenges of interfacing

and should not be considered comprehensive. Internal UGA SSRL documentation should be

consulted for current CORGI pinouts and interfacing.

Figure 3.2: The CORGI board schematic, seen as version 3.1.2.

31

The CubeSat form factor is the primary consideration in the design of the CORGI.

The form factor complies with available deployers such as the Poly Picosatellite Orbital

deployers (P-POD), and the JEM Small Satellite Orbital Deployer (J-SSOD), and is modular

to accommodate the payload and support I/O both spatially and functionally [27][28]. The

CORGI board (see Figure 3.1) was minimally designed to meet our mission and development

requirements. However, the design still required optimization and additional features to

provide a comprehensive accelerated heterogeneous computing platform [26]. CORGI has

useful features such as bi-directional logic shifters to convert the 1.8V (CMOS) logic from

the onboard Nvidia Jetson TX2i [23] to peripheral logic. Shifters are required for serial

data transfer, GPIO flipping, and IC enabling. The CORGI will maintain a PC/104+

form factor (90 x 96 mm)[22] with an ergonomic cutout to accommodate the high speed

LVDS expansion header (Samtec LSHM-120-04.0-L-DV-A-N-K-TR) mounted beneath the

TX2i module. Tight integration of both CPU and GPU allows support of all aspects of

satellite performance, such as power, command and data handling, attitude determination,

and payload.

As shown in Figure 3.2, H1 and H2 are the main PC/104+ CubeSat headers. These

route peripheral components onto the bus, as well as routing the PC/104+. The H1 and H2

headers on the CORGI also act as pass-throughs, so there is no break in communication or

power. In addition to an RJ45 Ethernet receptacle, the CORGI board also routes a display

port for ground testing and has support and 2x USB Type C for debugging the TX2i.

3.1.3 System Hardware Mitigation and Shielding

For radiation and thermal mitigation in LEO we recommend utilizing the Dunmore Aerospace

“Satkit” which contains the standard STARcrest MLI materials cut into manageable sizes

for small satellite developers. This allows the development of thermal protection blankets

according to various mission requirements. The kit includes an outer layer material, inner

32

layer material, first surface tape, and clear polyimide tape[29]. This kit is optimal for small

satellite systems as it is small, cheap, and easily customizable. More specifications of the ma-

terials are listed below (See table 3.1) and values were calculated from the Solar Radiation,

Earth’s IR radiation, and Albedo Radiation equations [30].

q = Gsαs cosφ (3.1)

q = σT 4
e αIRFe (3.2)

q = Gs(AF)αsFe cos θ (3.3)

The heat flux due to the LEO sources using equations (3.1), (3.2), and (3.3) was calculated

with the help of data from literature [30]. Values have an expected error of ±0.4. Values for

the solar radiation were determined using the mean values provided by data from the World

Radiation Center in Davos, Switzerland [31].

The necessary thickness of the radiation shield was calculated in part using values pro-

vided by Dunmore. The primary source of heat flux is solar and these values vary on an

annual basis due to the an elliptical orbit. This means that the maximum and minimum

amount of flux expected from the Sun would range between 1322 and 1414w/m2 . The target

ambient temperature inside the CubeSat is 293.15 K (20 degrees C). This is calculated with

the following formula:

Q =
∆TKA

L
(3.4)

Radiation is calculated with equation (3.4), where Q is the heat flux into the system, K

is the thermal conductivity of the material, A is the area in m2, and L is the thickness of

33

the radiation shielding. Assuming a thermal conductivity of 0.014 and a ∆T of 101K, the

expected required thickness of the radiation shielding is 1.03438 · 10−7m2 . Radiation from

Free Molecular Heating (FMH) was determined to be negligible for the stage in which the

CubeSat would be launched from the ISS. FMH is almost exclusively encountered during

launch ascent just after the booster’s payload fairing is ejected.

VDA / 200 GA Polyimide

Tensile Strength 24000 psi
Elongation 50%
Thickness 50.8 micron
Density 1.42 g/cc
Yield 13.8 m ·m/kg

Weight/Area 72 g/m2

Operating Temp -250 - 400 C
Metalization 99.99 % pure aluminium

VDA / 200 GA Polyimide

Tensile Strength 26000 psi
Elongation 110 %
Thickness 6.35 micron
Density 1.39 g/cc
Yield 124.9 m ·m/kg

Weight/Area 8 g/m2

Operating Temp -250 - 150 C
Metalization 99.99 % pure aluminium

VDA / 25 GA PET / VDA, Embossed & Perforated

Thickness 76.2 microns
Yield 10.4 m ·m/kg

Weight/Area 96 g/m2

Operating Temp -40 - 220 C
Metalization 99.99 % pure aluminium

100 GA Polyimide / 966 PSA

Thickness 76.2 microns
Yield 10.4 m ·m/kg

Weight/Area 96 g/m2

Operating Temp -40 - 220 C
Metalization 99.99 % pure aluminium

Table 3.1: Recommended Dunmore Aerospace Satkit parts

34

3.1.4 Radiation Mitigation

The radiation shielding thickness (See Equation (3.4)) is also driven by the 1997 IEEE Stan-

dard for Environmental Specifications for Spaceborne Computer Modules [24]. We design

for level I radiation in preparation for the LEO environment. An additional benefit of the

Dunmore Aerospace “Satkit” is that it meets this standard while accruing minimal mass

gains.

Proper shielding does not have to incur heavy mass gains, and in fact shielding that is

too thick can increase the effects of some kinds of radiation events. This is due to the higher

levels of secondary particles created when a high-energy GCR particle impacts a thick shield

[32]. If necessary, due to mass limitations, a properly designed shield may also act as a heat

sink. This reduction of a device’s operating temperature can greatly reduce the risks posed

to that device by radiation [32].

When working with Commercial Off The Shelf (COTS) electronic components for use

in the space environment, some of the problems that must be addressed are data integrity,

performance, and accuracy in high radiation environments. In our design the TX2i is one

of the more vulnerable parts with respect to this due to its highly dense hardware design

[33]. As stated above, much can be done at a hardware level but software mitigation is often

needed.

3.1.5 Thermal Mitigation

Simulations were conducted on the Jetson TX2, not the Jetson TX2i. The two boards,

however, utilize the same Parker Series SoC and therefore have identical thermal properties

within that region. Simulations have shown, given a large enough mounting structure, that

the Nvidia TX2 is capable of dissipating heat effectively. To achieve this goal it is imper-

ative that the TX2’s Thermal Transfer Plate (TTP) is adequately interfaced into the heat

35

dissipating mass [20]. To interface the TTP with the heat dissipating mass, we highly rec-

ommend the use of a low thickness and high conductance thermal interface material (TIM)

that adheres to the NASA standards for collected volatile condensible materials (≤ 0.1%

CVCM) and total mass loss (≤ 1% TML) [34]. Previous findings have suggested that the

Carbice Space TIM is ideal for these purposes due to its low thickness (0.065mm) and high

conductance (13, 330Wm−2K−1) [20].

Figure 3.3: The Nvidia TX2 daughter-board with the Parker Series SoC exposed. No TIM
is used in this simulation.

It is important to note that all thermal simulations are run with a heat load according to

subsystem power draws and assume 0% efficiency for a worst case scenario. The steady state

thermal simulation clearly shows that the GPU’s core temperature has been lowered with the

addition of the TIM. The overall maximum has been brought down from around 160◦C to

under 50◦C. While this model did not include the entire spacecraft structure as a conduction

medium, this would only serve to decrease the temperature further, as conduction is a much

faster heat transfer mechanism than radiation.

However, some caution must be used with these results. The thermal environment of

the satellite is inherently transient, so the ambient temperature assigned to the model here

is likely inaccurate. This also means a “steady state” analysis might not necessarily be

36

Figure 3.4: The Nvidia TX2 daughter-board with the Parker Series SoC exposed. TIM is
used in this simulation

Figure 3.5: The Nvidia TX2 with TTP integrated and TIM used.

appropriate. However, the purpose of this analysis is not to provide conclusive thermal

information about the TX2i/CORGI, rather to serve as a data point for design, and to show

that under extremely approximate conditions, the TX2i/CORGI will be able to operate in

orbit.

37

Figure 3.6: The Nvidia TX2 with TTP integrated, no TIM is used.

3.2 Space Operating Linux

The Nvidia Tegra line of products includes the Jetson TK1, TX1, TX2, TX2i, and Nano.

This section only focuses on the TX2, TX2i, and Nano. All of Nvidia’s Tegra products

use a specialized fork of Ubuntu 16.04 called Linux for Tegra (L4T). Though L4T is well

optimized for most terrestrial applications, it is not well suited for space applications. Thus,

we have sought to modify L4T in the following ways: by implementing a RAM based file

system for use on the TX2i, TX2, and Nano, by implementing a triplicated boot loader

so a stable operating system can boot, and by enabling real time scheduling in the L4T

linux kernel. The implementation of a RAM based filesystem is due to the fact that the

system’s RAM is much more resilient to radiation than a micro SD card. The triplicated

bootloader is for a similar reason; because radiation is expected to degrade the operating

system image, we seek to employ triple modular redundancy (TMR) at the bootloader level

38

as a mitigation technique. Lastly, real time scheduling is desired because operations in a

space environment are extremely time sensitive. Instead of allowing the default scheduler

to loosely time execution, we want to have start and stop time guarantees when running

software on the TX2i / CORGI system. To avoid needless work, and to quickly test the

goals of our custom operating system, we will use the Yocto Project’s build tools. Yocto is

an open source set of tools that helps developers create custom Linux-based systems. We

will incorporate and slightly modify the open source U-boot bootloader to achieve TRM at

the bootloader level. Lastly, we will utilize the PREEMPT RT real time linux patch for the

kernel.

The resulting specialized operating system is known as Space Operating Linux (SOL)

and is a joint collaboration between the John’s Hopkins Applied Physics Laboratory (JHU

APL) and the UGA SSRL. The goal is to make a stable and minimal real-time scheduled

linux system for a space-modified Nvidia TX2i GPU/SoC. The operating system will be

based off of Ubuntu and L4T and will allow for responsible GPU computation in a space

environment. The custom build is available on github or the UGA SSRL gitlab.

One of the major problems radiation presents for software is its effect on memory. Over

time as bit flips [30] [24] aggregate, they will corrupt information and make some systems

unusable. To address these issues, I have led an effort to modify the file system and boot-

loader. I use the principle of TMR to automatically correct damage. In addition to this,

we will use the U-Boot bootloader software to modify the bootloading process with TMR

[35]. The bootloader will store 3 copies of the operating system (OS) image for the TX2i

and a hash for each image. At boot time, the bootloader will recalculate the hash for each

OS image it attempts to load and compare the calculated hash against the stored hash to

determine if the OS has been corrupted. If corruption is detected, then the boot loader

will attempt to load the next OS image. If all OS images are determined to be corrupted,

the bootloader shall attempt to construct an uncorrupted image by bit voting between the

39

corrupted images.

The Clyde Space OBC is the trusted control node, and test results show that the Smart

Fusion 2 has high levels of radiation tolerance [36]. Thus, we plan to have the OBC operate

as a watchdog for the TX2/TX2i. If the OBC detects that the TX2/TX2i has anomalous

power draw levels (over ≈ 10 Watts), it will send a command (via the OBC) instructing the

TX2i to reduce GPU usage until the power level stabilizes.

40

Chapter 4

Onboard Computer Vision

The overall goal of the MOCI’s computer vision software is to take sets of 2D images and gen-

erate 3D models. One of the first steps in what I call one of our computer vision ”pipelines”

is the detection and description of features within the images. The pipeline then seeks to

match identified points within these images. Next, some filtering removes matched points

which are considered bad. After good matches have been obtained, rays are generated us-

ing camera parameters, the satellite’s location, and match locations. Those rays are then

”reprojected” into the real space using a triangulation. Thus, the goal with a reprojection

is to take the pairs of matched points and move them from R2 into R3 so that equations of

lines can be generated from the focal point of the camera into each matched point. Then,

we want to find the minimum distance between those lines and choose the midpoint of that

line segment at our reprojected point. Those sets of points are considered an unfiltered

initial point cloud. Some additional filtering is done to this point cloud and then the bundle

adjustment begins. The sets, or bundles, of lines which represent matched lines are adjusted

to minimize the mismatch error of the lines.

The mathematics of this section are implemented in a computer vision library known as

SSRLCV (Small Satellite Research Lab Computer Vision) which is freely available and open

41

sourced. The implementation of the software library is not rigorously discussed, but results

are analyzed in chapter 6.

4.1 Role of Systems Dynamics

It is critical for the satellite to have accurate position and orientation data so that the

computer vision pipeline can reconstruct 3D surfaces. Without accurate estimates of location

and orientation, costly estimation algorithms must be employed. Such algorithms are not

necessary, as the satellite’s position and orientation can assume knowledge within bounds.

These bounds are inherently tied to systems dynamics and controls, as it is the Attitude

Determination and Control System which provides these estimates.

4.1.1 TLEs and Propagators

A Two Line Elements (TLE) is a standard for encoding of orbital elements of an earth

orbiting object at a given point in time. With only a TLE, a future state of the orbiting object

can be determined within bounds. The algorithms which calculate these future states are

known as simplified perturbation models, with the most commonly used being the Simplified

General Perturbation 4 (SGP4) model. Though SGP4 is considered a model, it is also an

algorithm. Though there are certainly more accurate models to use, the SGP4 algorithm has

remained the most popular ever since the release of the FORTRAN source code in 1988. The

commerically systems used by SPOC and MOCI utilize the SGP4 propogation algorithm.

4.1.2 The Kalman Filter

The Kalman filter is ubiquitous in robotics and motion planning and is fantastic for state

estimation. A Kalman filter is a linear quadratic estimator (LQE) which uses a series of

noisy measurements over time to update a predicted future state based on an assumed

42

initial model. Here the initial model is the SGP4 propagator and updates from observations

of the satellite’s state come from the various sensors interfaced to the ADCS. The algorithm

even famously incorporated into the Apollo flight computer.

4.2 Camera Systems

An accurate characterization of the satellite’s camera system is necessary for an accurate

reconstruction of the observed geometry from cube satellites, as slight variations in camera

parameters can cause massive changes in final 3D models [37] [38]. To avoid costly camera

parameter estimation algorithms, the satellite’s camera is pre-calibrated before launch. Ad-

ditionally, camera parameter estimation is only necessary within certain boundaries, as the

camera’s systems are characterized on the ground before launch. Certain variables, such as

focal length, may change slightly during operations due to temperature gradients.

4.2.1 The Pinhole Camera Model

The pinhole camera model is the simplest camera model and one that is most common in

computer vision applications [38]. The MOCI satellite assumes a pinhole camera model

within all of its software. The pinhole camera can be thought of as the interaction of light

rays with an image plane as they converge to a single point behind the image place, known

as the focal point.

The most common way to represent the pinhole camera is with projection matrices. The

matrices can be broadly classified to encode intrinsic and extrinsic camera parameters, with

the intrinsic parameters encoding optical information and the extrinsic parameters encoding

world coordinate information. The intrinsic matrix is parameterized with a focal length in

the x direction fx, a focal length in the y direction fy, and a principle point (x0, y0); this can

be seen in equation (4.1).

43

K =


fx 0 x0

0 fy y0

0 0 1

 (4.1)

Then, we can consider the extrinsic camera matrix as one which encodes rotation and

translation information; for this we can use a rotation and translation as seen in equation

(4.2).

[R|t] =


r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

 (4.2)

The resulting camera projection matrix in equation (4.3) can be used to calculate a given

point in R3’s position in R2 on the camera plane.

P = K × [R|t]

P =


fx 0 x0

0 fy y0

0 0 1



r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3


(4.3)

The final calculation for the 2D image projection, m, from a 3D world coordinate, P ,

where the final (x, y) of the projected point in the image is given by (u, v), is as follows in

equation (4.4):

44

Figure 4.1: Some potential effects of radial distortion, from left to right: Barrel Distortion,
Pin Cushion Distortion, and Mustache Distortion

m = K[R|t]P


u

v

1

 =


fx 0 x0

0 fy y0

0 0 1



r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3





X

Y

Z

1


(4.4)

4.2.2 Camera Distortions

We cannot assume that the image plane is undistorted. Therefore, assuming some accurate

knowledge of the camera’s intrinsic parameters, we must attempt to undistort our image.

For us, this means we apply transformations to our distorted matched points in order to

get the undistorted locations. There are several types of distortion, but we only account for

radial distortion, which is often sufficient for most practical purposes.

To undistort our images, we need a formula which maps the distorted feature point

coordinates to the undistorted coordinates. The formula we use is based on a simple Taylor

series expansion with either one or two distortion coefficients, given by:

45

xu = xd + (xd − cx)(K1r
2 +K2r

4)

yu = yd + (yd − cy)(K1r
2 +K2r

4)

(4.5)

Equation (4.5) is defined where r =
√
x2 + y2 =

√
(xd − cx)2 + (yd − cy)2 is the distance

of the point from the distortion center (cx, cy) is the radial distortion center (sometimes

different from the image center). K1 and K2 are the first and second order radial distortion

coefficients, respectively. Ideally we try to find the distortion coefficients which minimize

these problems via mathematical optimization. During the optimization, we define a cost

function (to be minimized) as the reprojection error, which can be done in one of two ways:

1. Take a known simple scene or object, such as a grid, with precisely known 3D coor-

dinates. This object is often called the calibration object. The reprojection error is

the difference between our 2D images of the object versus the actual 3D coordinates

projected onto these image planes. This is explained in detail in section on bundle

adjustment.

2. The second method, sometimes called the total calibration or self-calibration method,

does not require a calibration object. Instead it uses epipolar geometry and defines

the reprojection error as the distance of a predicted 2D matched point to the epipolar

line. For two views, the epipolar line is defined as the line in 3D space between the

matched point on images, given its coordinates in the first view. For every point in

view 1, we can compute the epipolar line in view 2 using a special matrix called the

fundamental matrix. A diagram of this can be seen in 4.4.

By defining an optimization function to be the sum of squared reprojection error, the dis-

tortion coefficients can be estimated using the Levenberg-Marquardt algorithm which is

discussed in more detail in a later section.

46

4.3 Feature Detection, Extraction, and Matching

Two widely used concepts to begin to determine 3D information, which take in arbitrary

input images and attempt to identify common features between the images, are feature

extraction and feature matching [39][40]. While this is intuitive, identifying features and

determining a consistent method for matching two features is computationally expensive.

This is why we choose to parallelize computations on a GPU (Graphics Processing Unit)

with CUDA (Compute Unified Device Architecture). In addition, knowing the camera’s

geometry and optical properties are vital. Solutions such as bundle adjustment [41] can

optimize the knowledge of the full system; however, in regards to the application of satellite

imagery, many assumptions can be made to improve the capabilities of imaging systems

constrained in an orbital environment.

Effective and efficient feature matching is key to advancing on-orbit imaging capabilities

and terrestrial data gathering techniques. The ultimate goal for these imaging systems is

the ability to register features and decide how to decipher a solution for the objects detected

[42][43]. The methods described here use a standard Scale-Invariant Feature Transform

(SIFT) algorithm from Lowe’s original implementation [44][45][46][47].

We can assume that we are given two matched points, (x0, y0) and (x1, y1), for images I0

and I1 respectively. We also assume that the images I0 and I1 have n by m pixels. Again,

the locations of the matched points will be given to us at the subpixel level in R2 with the

origin in the top left by convention.

4.3.1 SIFT - the Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) algorithm can be broken up into many com-

ponent stages. First, the SIFT algorithm attempts to identify extrema in scale space. These

points are considered candidate points for feature description and are what make the algo-

47

y

x

(x0, y0)

I0

y

x

(x1, y1)

I1

Figure 4.2: Matched points are on separate pixel grids in R2, but these pixel grids are not
necessarily discrete. Subpixel feature detection methods are often employed to improve the
accuracy of feature matching.

rithm scale invariant. Next, the algorithm achieves rotation invariance by assigning orienta-

tions to particular points from the scale space generation. Finally, the algorithm generates

a feature descriptor in the form of a vector of 128 orientations, a histogram of oriented

gradients. When this is performed across multiple images, nearly identical histograms are

considered nearly identical points.

4.3.2 Dense SIFT

The SIFT feature descriptor is the current standard, with the exception that our method

needs no scale value within the scale space. As described by Lowe [45], the descriptor

is calculated in the form of a histogram of oriented gradients [45]. The standard SIFT

algorithm uses feature detection before features are extracted. However, with dense SIFT

variants, it is common to perform a per pixel feature extraction [47][46].

First, we proceed to compute a feature for each pixel in the image I(x, y) using a 16x16

48

grid centered at the pixel in question. Since this grid has data values at each corner of every

cell, we use this grid to make a 16x16 matrix such that each value of the matrix consists of

the average of a cell’s four corners of the grid.

Figure 4.3: Example image gradients of the tip of Mount Everest calculated in a 16x16 grid

Next, we use this matrix to construct 16 4x4 sub-matrices. At each pixel in a sub-matrix,

we calculate the orientation and magnitude of each pixel using the following equations from

Lowe:

m(x, y) =
(
(I(x+ 1, y)− I(x− 1, y))2

+ (I(x, y + 1) + I(x, y − 1))2
)0.5

(4.6)

θ(x, y) = tan−1

(
I(x, y + 1)− I(x, y − 1)

I(x+ 1, y)− I(x− 1, y)

)
(4.7)

Then for each 4x4 sub-matrix, we create an 8-element vector, vi,j, such that the value at

each index, b, is the sum of each pixel’s magnitude where the orientation, θ, is as follows:

49

bπ
4
≤ θ < (b+1)π

4
. Once this is computed, we store each vector in the final feature descriptor.

f(x, y) =



v0,0 v0,1 v0,2 v0,3

v1,0 v1,1 v1,2 v1,3

v2,0 v2,1 v2,2 v2,3

v3,0 v3,1 v3,2 v3,3


(4.8)

After obtaining the dense SIFT features for each pixel over a set of images, we proceed to

match similar features over two images. These matched features represent similar geometric

locations taken from different perspectives. To match these features, first we employ coarse

pixel match location based constraints provided by epipolar geometry and outlier rejection.

4.3.3 The Matching Problem

Subpixel dense matching is the most computationally expensive piece of the algorithm by

orders of magnitude. We are given two input images I1 and I2 that are both n x m pixels

in size. Each index pair (i, j), where 0 ≤ i < n and 0 ≤ j < m, indicates a feature’s

location on the image in pixel coordinates. We denote a feature by fimage #(i, j), which is a

128-dimensional normalized feature descriptor. We then check two features for a match by

calculating ||f1(i1, j1)−f2(i2, j2)||. The goal is to pair each feature on the first image with the

feature on the second that most closely matches its feature descriptor. The exact difference

between the features need not be zero, just the closest possible match. The results do produce

noise, so later filtering is required to remove features that were matched too liberally. Thus

the precise goal mathematically, for every feature f1(i, j) ∈ I1 and f2(i, j) ∈ I2, is to compute:

min
(i′,j′)
||f1(i, j)− f2(i′, j′)|| (4.9)

The computational complexity of this process is O(n2m2) because all features in image

50

I1 must be searched against all features in image I2. This is computationally expensive, even

in a GPU accelerated framework. In the following sections we further expand on epipolar

geometry and how it can be exploited in order to narrow this search space significantly.

4.3.4 Epipolar Geometry and the Fundamental Matrix

Epipolar geometry is the projective geometry between two views. When two cameras view a

3D scene from different positions, there are some geometric relations between the 3D points

and their projections onto the images that define useful constraints between image points.

Figure 4.4 depicts two cameras looking at some point X in world space.

C e e′ C ′

x

X?

X

X?

x′

l′ ± ε

Figure 4.4: Epipolar geometry with epipolar line l′ and constrained search path l′ ± ε

Let C and C ′ be camera centers for our two views, and let x be some point on the first

image. Figure 4.4 shows that x alone is not enough to determine a unique location of the 3D

world point X as any points on the line segment from x to X in the picture would project

to the same image location on image 1; however, each one maps to a different location in

image 2. If we were to project this entire line to image 2, then we would end up with a line

segment which represents the valid potential locations for the corresponding matched point

x, depending on the exact location of X in space. This line, referred to as the epipolar line,

51

can be determined for every feature point. The fundamental matrix, denoted F , maps every

point in image 1 to a corresponding epipolar line in image 2, and vice versa.

The fundamental matrix F is the algebraic representation of the epipolar geometry be-

tween two views. For a given point x on image 1, the matched point x′ in image 2 must lie

on the epipolar line l′ = Fx. This constraint is summed up by the equation:

x′TFx = 0 (4.10)

which holds for all corresponding points (x, x′). In practice, this equation does not

perfectly hold for all matched points, so point correspondence is not mathematically perfect.

This is a combination of the accumulation of small floating point errors and errors in the

initial estimation of keypoints during feature extraction. This error increases as the distance

between x′ and l′ increases.

4.3.5 Restricted Search Region from Epipolar Geometry

An important issue with feature matching in general is dealing with mismatched points.

That is, two points may be matched because their feature descriptors are similar even when

the two features represent two entirely different points geometrically from the 3D scene. This

mismatch of feature points can cause mathematical problems when using the matches later

on, especially in applications such as 3D scene modeling that use a least squares algorithm

and tend to be sensitive to outliers. Therefore, removing these outliers from the matched

point data set is a vital post-processing step for matching algorithms.

One should recall from the previous section that outliers occur when matched features

do not lie anywhere close to the epipolar lines of the corresponding feature. Since we already

have this metric to determine error in matching, we can proceed to select some outlier

tolerance threshold ε in pixels. Next, for each f1(i, j) ∈ Ii, compute the epipolar line

52

l′i,j = F ḟ1(i, j). Define the set:

Hi,j ⊂ I2 = {h ∈ I2 | d(h, l′i,j) ≤ ε} (4.11)

where the function d is the distance in pixels between h and the epipolar line l′i,j. We

can now modify our original equation to only search in this region H:

min
(i′,j′)∈Hi,j

||f1(i, j)− f2(i′, j′)|| (4.12)

Note that our outlier tolerance ε represents an error bound which, if exceeded by any

feature match, should be labeled a mismatch and thrown out. Since we are able to define

this region geometrically, we save a huge amount of computation by only searching in this

constrained region. The size of the constrained search space depends directly on our selection

of ε, so we can compare results for different choices of the value, including ε =∞ (no search

restriction).

4.3.6 Bicubic Splines of Matching Windows

To enhance matching in the case of dense SIFT extraction, bicubic splines can be used within

the matching windows. Cubic splines fit a piecewise polynomial function over some discrete

set of input values [48]. This allows a surface to be generated over a potential feature match

to identify a more accurate minimum than would be allowed by checking discrete values. In

addition, it allows for the geometric match where a feature is projected within 3D space.

Once the pixel match has been found, we proceed to find the subpixel match. We will call

the matched features f1(i1, j1), f2(i2, j2). After this, we construct two odd n×n dimensional

arrays M1,M2 for each image (odd because arrays are built around around a certain feature,

associated with a certain pixel) and populate these arrays with the following information:

53

M1(i, j) = ||f1(i1 + i− n− 1

2
, j1 + j − n− 1

2
)− f2(i2, j2)|| (4.13)

M2(i, j) = ||f1(i1, j1)− f2(i2 + i− n− 1

2
, j2 + j − n− 1

2
)|| (4.14)

For the purposes of this paper, we chose n = 9 (because it is large enough to have 2

immediate neighbors in all cardinal directions) as the size of this matrix. From here, we

construct the data needed for the spline to overlay. For the interpolation to be successful,

we need to know the edge values and derivatives of our function. To gather this data we

create a 7x7 matrix, F , such that at each index in F, the function f represents the value

and central derivative information of the desired function to be interpolated.

F (i, j) =



f(0, 0) f(0, 1) fy(0, 0) fy(0, 1)

f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)

fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)

fx(1, 0) fx(1, 1) fxy(1, 0) fxy(1, 1)


(4.15)

Each entry i, j, is determined by the following finite difference equations:

f(x, y) = M(i+ x+ 1, j + y + 1)

fx(x, y) = M(i+ x, j + y + 1)−M(i+ x+ 2, j + y + 1))

fy(x, y) = M(i+ x+ 1, j + y)−M(i+ x+ 1, j + y + 2))

fxy(x, y) = M(i+ x, j + y)−M(i+ x+ 2, j + y + 2))

(4.16)

Now we create the bicubic spline, Si,j based on each entry in F (i, j) and obtain the final

bicubic spline, B(x, y) where −3 ≤ x < 3 and −3 ≤ y < 3. This gives the final equation:

B(x, y) = Si,j
(
x− (3− i), y − (3− j)

)
(4.17)

54

From here we find the absolute minimum of that spline at some location x0, y0, and

determine the subpixel location of feature i, j at pixel (i+x0, j+ y0). In the implementation

we check to see if the subpixel matches lie on the boundary. If they do, we rely on the course

resolution feature location. This occurs because an optimal match from I1 to I2 may not be

the optimal match from I2 to I1.

4.4 3D Reconstruction

3D reconstruction consists of taking sets of matched points from the SIFT algorithm (other

feature detection and matching algorithms could also work), moving them to their real loca-

tions in 3D space, and then deducing 3D structure from camera parameters match locations.

In addition to the previous methods, MOCI seeks to test several of the following methods

in orbit.

4.4.1 Stereo Disparity

Stereo disparity is perhaps the simplest form of 3D reconstruction possible given a set of

corresponding match points in images. It is performed with rectified images that have

match locations and by calculating the euclidean distance between both of the match points

(assuming they are on the same image plane after rectification). This has the desired effect

of producing a larger ”disparity” between points closer in 3D space and a smaller ”disparity”

between points that are farther away in 3D space. All that is needed to create a realistic

model from this method are the camera parameters of the system so that a scaling factor

can be applied to the euclidean distance.

55

z = f
C

Cz

Cy

Cx

y − res
2

x− res
2

x

y

(x′, y′)

~v

Figure 4.5: A visualization of line generation and reprojection from the image space to the
world space

4.4.2 Triangulation for Reprojection

The goal of triangulation (also known as reprojection) is to take the pairs of matched points

from the SIFT algorithm and move them from the camera’s image plane in R2 into world

coordinates in R3. After being translated into R3 equations of lines can be generated from

the focal point of the camera into each matched point. Then, the minimum distance between

those generated lines can be used to choose the midpoint as an estimated 3D coordinate.

Generating Equations of Lines

The generations of sets of lines, within the context of SSRL software, is known as bundle

generation. This is because the sets of lines can be thought of as a bundle of matched

lines. For a given 3D reconstruction there are potentially many hundreds of thousands of

bundles. These bundles may contain 2 lines, but they may also contain many more lines.

The following section explains how I handle these cases.

The goal here is to generate a parametric equation of a line given camera position and

56

orientation coordinates C, the camera focal length f , and the position of a coordinate in R2

on the image plane. We wish to generate vector v that can be used to make the parametric

equation. The 2-view reprojection takes the matched points between 2 images and places

them into R3. To place each set of points into R3, some trigonometry and and matrix

transformations need to take place. The first step to moving a keypoint into R3 is to place it

onto a plane in R2. the coordinates (x′, y′) in R2 require the size of a pixel dpix, the location

of the keypoint (x, y), and the resolution of the image (xres, yres) to yield:

x′ = dpix

(
x− xres

2

)
y′ = dpix

(
y − yres

2

)
(4.18)

This is repeated for the other matching keypoint. The coordinate (x′, y′, z′) in R3 of the

keypoint (x′, y′) in R2 is given by three rotation matrices and one translation matrix. First

we treat (x′, y′) in R2 as a homogenous vector in R3 to yield (x′, y′, 1). Given a unit vector

representing the camera orientation (rx, ry, rz), in our case the spacecraft camera, we find

the angle to rotate in each axis (θx, θy, θz). In our simple case we find the angle in the xy

plane with:

θz = cos−1

([
1 0 0

]
·
[
rx ry rz

])
√[

rx ry rz

]
·
[
rx ry rz

] (4.19)

It is important to note that the sofware treats all planes in an identical way, rotating in

several axis. Now, given a rotation in each plane (θx, θy, θz) (lets call this rotation matrix Rθ),

we calculate the homogeneous coordinate (rx, ry, rz, 1) in R4 using linear transformations.

The values (Tx, Ty, Tz) represent a translation in R3 and use camera position coordinates

(Cx, Cy, Cz), the camera unit vectors representing orientation (ux, uy, uz), and focal length

f . Let the rotation matrix R in equation (4.20) represent a 3x3 rotation matrix generated

from multiplying component rotation matrices of each axis.

57

Rθ



x

y

z

1


=



xr

yr

zr

1


(4.20)



Cx − (xr + f · ux)

Cy − (yr + f · uy)

Cz − (zr + f · uz)

1


=



Tx

Ty

Tz

1


(4.21)



1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1





xr

yr

zr

1


=



x′r

y′r

z′r

1


(4.22)

The above process should happen for all points that have been matched. This will result

in 2 homogeneous points that we will call

[
x0 y0 z0 1

]T
and

[
x1 y1 z1 1

]T
. Each point

has a corresponding camera vector, that is already known thanks to the camera coordinates,[
Cx0 Cy0 Cz0 1

]T
and

[
Cx1 Cy1 Cz1 1

]T
. From this we can make parametric lines L0

and L1 with the parametric variables t0 and t1:

58

L0 =


x0 − Cx0

y0 − Cy0

z0 − Cz0



t0

t0

t0

+


Cx0

Cy0

Cz0



L1 =


x1 − Cx1

y1 − Cy1

z1 − Cz1



t1

t1

t1

+


Cx1

Cy1

Cz1


(4.23)

The host functions (this is CUDA terminology for a CPU located function) are simple

and will not be addressed here, refer to standard CUDA memory management.

Minimum Distance Between Skew Lines

Now that we have lines L0 and L1, the challenge is to find the points s0 and s1 of closest

approach. First, we must test the assumption that our lines are skew, meaning they are not

parallel and do not intersect. To frame this, we take the forms of L0 and L1 and simplify them

by thinking of them as parametic vectors where C0 and C1 represent the camera position

vectors v0 and v1 represent the vector was previously calculated from the subtraction of

match coordinates with the camera vector. We make the simple equations:

L0 = v0t0 + C0 L1 = v1t1 + C1 (4.24)

To make sure that the lines are not parallel, which is unlikely, we must verify that their

cross product is not zero. If v0×v1 = 0, then we have a degenerate case with infinitely many

solutions. As long as we know this is not the case we can proceed. We know that the cross

product of the two vectors c = v0 × v1 is perpendicular to the lines L0 and L1. We know

that the plane P , formed by the translation of L1 along c, contains C1. We also know that

59

the point C1 is perpendicular to the vector n0 = v1 × (v0 × v1). Thus, the intersection of L0

with P is also the point, s0, that is nearest to L1, given by the equation:

s0 = C0 +
(C1 − C0) · n0

v0 · n0

· v0 (4.25)

This also holds for the second line L1, the point s1, and vector n1 = v0 × (v1 × v0) with

the equation:

s1 = C1 +
(C0 − C1) · n1

v1 · n1

· v1 (4.26)

Now, given two points that represent the closest points of approach, we simply find the

midpoint m:

m =


(s0[x] + s1[x])/2

(s0[y] + s1[y])/2

(s0[z] + s1[z])/2

 (4.27)

4.4.3 N-View Reprojection

At this stage we are exclusively in R3. For the purpose of our software, we expect points in

the form P = (px, py, pz) and their corresponding orientation as a unit vector Û = (ûx, ûy, ûz)

we expect these together in a tuple ((px, py, pz), (ûx, ûy, ûz))n. This tuple comes with several

(n many) tuples which all uniquely correspond with a matched set. So we have a R3 match

set M = {(P, Û)0, (P, Û)1, ..., (P, Û)n} where n is the number of tuple pairs and has a one-

to-one correspondence with the number of views in which the R2 match was found. We also

generate a set of R3 matches, Mi, resulting in a set which has a one-to-one correspondence

with the total number of points we should have after reprojection.

In figure 4.6, assume that point C is the correct real world point and has no orientation.

60

0 1 2 3 4 5
0

1

2

3

4

5

(P, Û)0

(P, Û)1

(P, Û)2

C

Figure 4.6: Nview triangulation / reprojection example within a single plane

The goal is to make a best guess at the value of C given our imperfect information.

3 by 3 Inversion Method

A method which finds a ”midpoint” for n many views with minimal computational cost is

described as follows: At this point we do not actually know the coordinates of the real point

C, but we will derive how to find it. First, consider the identity:

(m× n) · (m× n) = ||m||2||n||2 − (m · n)2 (4.28)

Then, note we have the distance function, measure how much a given ((px, py, pz), (ûx, ûy, ûz))n

tuple (which represents a line) misses the real world target point C. Note this function is

calculated for each tuple.

Dn =
||(C − Pn)× Ûn||

||Ûn||
(4.29)

We will want to use the square of the distance (as is common in many optimization

61

problems) to insure convex optimization and positive distance values. We also use the

identity mentioned above to get our primary distance equation. Taking the first derivative

of the distance function will give us a local minimum value by finding a 0 solution.

Dn =
||(C − Pn)× Ûn||

||Ûn||

D2
n =

(||(C − Pn)× Ûn||
||Ûn||

)2

D2
n =
||(C − Pn)× Ûn||2

||Ûn||2

D2
n =
||C − Pn||2||Ûn||2 − ||(C − Pn) · Ûn||2

||Ûn||2

D2
n = ||C − Pn||2 −

||(C − Pn) · Ûn||2

||Ûn||2

dD2
n

dC
= 2(C − Pn)− 2Ûn

(C − Pn) · Ûn
||Ûn||2

(4.30)

We need to find a zero for the following (note that we are dealing with a vector in R3, so

0 = [0, 0, 0]T). The value m is the total number of R3 match points:

0 =
m∑
n=0

C − Pn − Ûn
(C − Pn) · Ûn
||Ûn||2

0 =
m∑
n=0

C − Pn −
Ûn(C · Ûn)

||Ûn||2
+
Ûn(Pn · Ûn)

||Ûn||2

0 =
m∑
n=0

C − Pn −
ÛnÛ

T
n C

||Ûn||2
+
ÛnÛ

T
n Pn

||Ûn||2

0 =
m∑
n=0

(
I − ÛnÛ

T
n

||Ûn||2
)
C −

(
Pn −

ÛnÛ
T
n Pn

||Ûn||2
)

(4.31)

This is of the form Ax = b because we now have 0 = Ax − b. Thus, we can remove the

62

summations and get a system that results in taking an inverse of a 3 by 3 matrix.

Notice the possible expansion:

0 =
m∑
n=0

(
I − ÛnÛ

T
n

||Ûn||2
)
C −

(
Pn −

ÛnÛ
T
n Pn

||Ûn||2
)

0 =

((
I − Û0Û

T
0

||Û0||2
)

+
(
I − Û1Û

T
1

||Û1||2
)

+
(
I − Û2Û

T
2

||Û2||2
)

+ ...

)
C

−

((
P0 −

Û0Û
T
0 P0

||Û0||2
)

+
(
P1 −

Û1Û
T
1 P1

||Û1||2
)

+ ...

)

0 = (A)C − (b)

AC = b

C = A−1b

(4.32)

So, the meat of this method is to calculate the A matrix’s inverse and multiply it by

vector b to find the estimated point C. Succinctly, these are calculated:

A =
m∑
n=0

(
I − ÛnÛ

T
n

||Ûn||2
)

(4.33)

b =
m∑
n=0

(
Pn −

ÛnÛ
T
n Pn

||Ûn||2
)

(4.34)

Then, because this method takes the inverse of a 3x3 matrix, we can easily write (hard-

code) a constant time inversion method. This makes the method an ideal N-view triangu-

lation method. Additionally consider that this is run on GPU, so the point estimations can

occur in parallel for each matched set of points. Similar benefits could be realized running

the algorithm on a multithreaded system.

63

4.4.4 Point Normal Estimation

The estimation of point normals is vital for accurate 3D meshing of point clouds, as normals

give additional information on curvature and enable smoother non-linear mesh interpolation.

Thus, a critical step in the computer vision pipeline of the MOCI satellite is to estimate point

normals. Though point cloud meshing is not currently implemented in the MOCI computer

vision software, it should be considered reasonable future work.

Aside from the point cloud coordinates, the only information needed in the point normal

calculation is the camera position (Cx, Cy, Cz) that generated each point. The final result will

be the same list of input point coordinates along with the computed normal vector of each

point. The problem of determining the normal to a point on the surface is approximated by

estimating the tangent plane of the point, and then taking the normal vector to the plane.

However, there are two valid normals for the estimated tangent plane but only one is suitable

for reconstruction. The correct orientation of the normal vector cannot be directly inferred,

so an additional subroutine is needed to choose the correct normal vector.

Let a given point cloud be referenced as PC = p1, p2, p3, ..., pn where a given point is

pi = (xi, yi, zi) and for each point pi ∈ PC we seek to find the correct normal vector ni =

(nx, ny, nz). Also note that each point has an associated camera of the form Ci = (Cx, Cy, Cz).

First, the k nearest neighbors of point pi must be retrieved; let these points be defined

as Qi,k = q1, q2, q3, ...qk where any neighbor qi ∈ PC. Then a centroid of the subset Qi,k is

calculated with equation (4.35):

m =
1

k

∑
q∈Q

q (4.35)

Next we seek to produce an approximation of a plane by calculating two vectors, v1 and

v2, from the given subset of k points. First, let A be a k x 3 matrix built from the centroid

being subtracted from each point in the nearest neighbor subset. To find the desired vectors

64

we must perform a singular value decomposition (SVD), seen in equation (4.36), and notice

that the covariance matrix ATA can be diagonalized so that the eigenvectors of the covariance

matrix are the columns of vector V (or the rows of vector V T).

A = UΣV T

ATA = (UΣTUT)(UΣV T) = V (ΣTΣ)V T

(4.36)

In general, the best r-rank approximation of an (n x n) matrix, r < n, is found by

diagonalizing the matrix as above, only keeping the first r columns of V (similarly only

the first r rows of V T), and only the first r diagonal elements of ΣTΣ (or only first r rows

and columns), assuming that the values on the diagonal of Σ were in descending order.

More precisely, for randomly ordered diagonal elements (σi)
2 ∈ ΣTΣ we keep only the

maximum r many of them, along with their corresponding eigenvectors in matrix V. The

reason for choosing the maximum valued eigenvalues is that it minimizes the amount of

information lost in moving to a lower rank approximation matrix. Therefore, to produce

the best approximation of a plane in R3 we would take the two eigenvectors, v1 and v2, of

the covariance matrix (which are exactly the columns of V) with the highest corresponding

eigenvalues. Those two eigenvectors span the plane we are looking for. Thus, the normal

vector ni is simply the cross product of these eigenvectors: ni = v1 × v2.

The reason for introducing the SVD is because in computing the covariance matrix ATA

we may lose some level of precision in the calculation. By simply factoring matrix A into its

singular value decomposition and taking the cross product of the first two rows of V T , we

can avoid this problem.

As previously mentioned, there are two viable normals that could be computed with this

method, but only one normal is the desired normal. To solve this issue we could simply

compute the vector from the camera position C to point pi such that (C − pi) ·ni < 0 holds.

65

If this does not hold then the vector can be flipped by changing the signs of its components.

However, because there are likely to be many camera locations, say C = Ci,1, Ci,2, Ci,3, ..., Ci,N

for all N cameras of a given point pi, a point’s normal can be considered ambiguous if the

following is true:

1. There exists a C̄1 ∈ C such that (C̄1 − pi) · ni < 0

2. There exists a C̄1 ∈ C such that (C̄1 − pi) · ni > 0

Such points cannot easily be oriented and thus additional computation is needed; fortu-

nately, in most cases there are very few such normals. When these normals are discovered

they are added to a queue of unfinished normals while the rest are placed in a list of correct

normals. The algorithm iterates through the queue of ambiguous normals and tries to de-

termine the orientation by looking at the neighboring points of pi. If the neighboring points

of pi have already finished normals, then ni is oriented such that it is consistent with the

neighboring normals mi by setting ni ·mi > 0 . If the neighboring points do not have already

finished normals, then we move pi to the back of the queue, and continue until all normals

are finalized.

4.5 Bundle Adjustment

Bundle adjustment seeks to minimize the error in the point estimation methods mentioned

above. It does this by iteratively adjusting the camera parameters, thus changing the match

sets of lines, or ”bundles”, such that the total error of the system decreases to a local mini-

mum. Usually it is necessary to consider that the system will converge to a local minimum

only and not the global minimum. However, this concern is not necessary for this computer

vision software as camera parameters are already relatively accurate.

66

4.5.1 Point Estimation Error

When points are estimated with the 2-view case, the minimal distance between skew lines

is calculated by taking the Euclidean distance between the points. For that case the total

error of the point cloud is simple to calculate and is just a summation of every point’s

individual error, or the average of that summation. The N-view case is similar; it can

either be calculated with the Euclidean distance between projected estimated points onto

the camera plane and their original match point (see 4.4) or by calculating the average.

These methods are an analog for the commonly used reprojection error, which is not directly

calculated in this case. Thus there are four possible error functions, though only the last

two are used practically:

1. Linear Error: Only calculated in the 2-view case, linear error is the shortest distance

between matched lines.

2. Average Linear Error: Calculated in the N-view case, average linear error is the

average shortest distance from the estimated point to its corresponding line.

3. Squared Linear Error: This is the practical 2-view error measurement, used so that

the error function can be used in convex optimization.

4. Squared Average Linear Error: This is the practical N-view error measurement,

used so that the error function can be used in convex optimization.

Their resultant functions of the practical error measurements are analyzed further in the

following sections.

4.5.2 Noise Removal

The distribution of error (calculator of error is above) in 3D reconstructions is typically

considered to be Gaussian. Thus, statistical filtering methods can be used to remove outlier

67

error points. The methods used here start by calculating a sample variance, σ2 , from a

random set of points. Let a given sample point be si and the average of the total error be s̄,

then the sample variance can be calculated with equation (4.37)

σ2 =
1

n

n∑
i=0

(
si − s̄

)2

(4.37)

Then, all points with some error outside of some n · σ, where n ∈ Z+, can be discarded.

In addition to the error function, the resultant point cloud can also be filtered on distance

to k nearest neighbors. The nearest neighbors removal has the effect of removing bad points

from regions of relatively low density and can still utilize the methods mentioned above.

4.5.3 Formulation as Gradient Descent

It is possible to formulate the bundle adjustment as an optimization to minimize one of the

error functions listed above. Though many algorithms exist to solve this, Newtonian gradient

descent is implemented here because of its simplicity. The most commonly used algorithm

in bundle adjustment is the Levenberg-Marquardt (LM) algorithm [41], which differs from

the standard Newtonian approach with its use of the second derivative, in this context the

Hessian matrix, and contains a dampening parameter to slow the descent around a local

minimum. It is certainly possible to implement the LM algorithm within the context of

MOCI’s bundle adjustment, this should be considered future work for SSRL lab members

or graduate students. However, given that camera parameters are expected to be relatively

accurate to start, the use of a second order Newtonian method with simple dampening might

be considered sufficient for this application. If camera parameters are not known, but are

instead estimated by some other computer vision procedure, then a more robust optimization

algorithm is likely needed. Additionally, noise removal should not occur during the gradient

descent as this can cause false minima and rapidly deteriorate into gratuitous point removal

68

until no points are left.

First, consider the standard Newtonian gradient descent and the parameters we are using

for this descent in equation (4.38). The position and orientation of the satellite are much

more uncertain than the focal length and field of view of the imager. Thus, intrinsic camera

parameters are considered, at least for now, to be close enough to their optimal configura-

tions that they should not be modified. Instead, extrinsic camera parameters (position and

orientation) are to be modified when searching for a minimum error. Let the chosen error

function be F (Cn) where Cn represents a vector of all input camera parameters at iteration

n.

Cn+1 = Cn − αnH†F (Cn)∇F (Cn) (4.38)

∇ is the gradient for the error function F with respect to all camera parameters in the

camera vector C. ∇ is a vector of partial derivatives that are calculated via a finite central

difference. A given element of ∇, say ∂F
∂Cn[i]

, where Cn[i] is the ith element in the vector Cn,

is calculated with a set size h along a vector e which is all 0’s other than a single 1 at the

ith index. This has the effect of only stepping a distance of h along the ith element of Cn,

thus estimating the partial derivative, as seen in (4.39).

∂F

∂Cn[i]
=
F (Cn + he)− F (Cn − he)

2h

∂2F

∂Cn[i]2
=
−F (Cn + 2he) + 16F (Cn + he)− 30F (Cn) + 16F (Cn − he)− F (Cn − 2he)

12h2

∂2F

∂Cn[i]∂Cn[j]
=

F (Cn + hiei + hjei)− F (Cn + hiei − hjei)
− F (Cn − hiei + hjei) + F (Cn − hiei − hjei)

4hihj

(4.39)

Additionally, the Hessian is calculated via a finite central difference seen above in equation

69

(4.39), which is defined similarly to the gradient only with more than one change to consider

(a change in different parameters Cn[i] and Cn[j]). The Moore–Penrose pseudoinverse of

the Hessian H† is then calculated to produce a stepsize adjustment for each step of the

gradient descent. The pseudoinverse is calculated, rather than the direct inverse, because

the Hessian may not always be invertable. The process for caclulating the inverse of the

Hessian involves caclulating a singluar value decomposition (SVD), where A = UΣV T for a

given matrix A. To calculate the pseudoinverse A†, matrices U and V T are transposed and

the inverse Σ−1 is obtained by taking the reciprocal of each non-zero element within Σ. The

equations cab be seen in (4.40).

A† = (ATA)−1AT ≈ A−1

A = UΣV T

A† = V Σ−1UT

(4.40)

At each iteration of the descent, the dampening variable α, seen in the initial equation

(4.38) is decreased by a ration of the previous error en−1 and the currently computed error

en such that αn = en−1

en
. Here the assumption is that en−1 > en; when this is no longer the

case, the algorithm has found a local minima and exits.

Most bundle adjustment algorithms analyze how camera parameters are defined to help

define derivatives. The camera model I have defined has special properties that are not de-

rived elsewhere in computer vision literature, so a derivation of camera parameter derivatives

was beneficial. Because I assume that intrinsic camera parameters are well calibrated, I have

not derived their derivatives. Instead, I derive only the extrinsic translation and orientation

derivatives by first deriving the error functions for each variable with respect to a single

point.

The coordinate systems of the cameras are relative, so convenient axis and points can be

70

X

Y L1

(x0, 0)

L0

(x1, y1)
∆y

∆x

(a) The translation case

X

Y L1

(x0, 0)

L0

(x1, y1)

θ

x1

y1

(b) The orientation case

Figure 4.7: Graphs used to aid in deriving camera parameter derivatives

chosen. Additionally, consider that only linear error is considered here. This linear error is

just the euclidean distance, d =
√

(x0 − x1)2 + (0− y1)2, between point (x1, y1) and point

(x0, 0).

The single point, seen in figure 4.7 as (x0, 0), should be thought of as a point on a line

perpendicular to the XY plane in which figure 4.7 is graphed. That line and the line L1

represent lines which should be used to produce a 3D point. The shortest distance between

the line L1 and the imagined 3D line passing through point (x0, 0) is along the line L0 within

the XY plane. Note that line L0 must be perpendicular to line L1 to represent the shortest

distance between L1 and (x0, 0).

The translation case is the easiest to consider. First, notice that a translation of line L1

along the Z axis results in no change in linear error and any translation of line L1 does not

change L0, thus L0 is constant in the translation case. Notice that a translation ∆x or ∆y

results in a right triangle where the sides are ∆x and ∆y. Thus, the resultant change in linear

error for translation is just the length of the hypotenuse, h =
√

∆x2 + ∆y2, and changes

71

linearly with translation. Consider that ∆x and ∆y are not independent and because slope

m = ∆y
∆x

we can substitute ∆y = m∆x so that we have the translation error as seen in

equation (4.41).

h =
√

(∆x)2 + (m∆x)2

e = (∆x)2 + (m∆x)2

(4.41)

The derivatives of the translation case are constant and no adjustment of step size γ is

necessary, but that is not a good thing. The resultant function to optimize is an absolute

value so its derivative is undefined at its minimum. Such a function is not desirable, the

constant step size for γ will result in slow performance and the convergence to the true

minimum is not guaranteed. Simply not taking the square root in equation (4.41) allows for

variable stepsize, faster convergence to the minimum, and guaranteed differentiability.

The orientation case is slightly more complicated, as the line L0 changes with a change

in θ. Notice that if both lines were in the same plane they would always have a point of

intersection. Thus, rotating within that plane would cause no change in linear error. The

goal is to have an error equation in terms of a change in θ. We consider the value x0 to be

constant just as before. First, let line L1 be defined as y = tan θx and line L0 be defined as

y = −1
tan θ

(x − x0) and then define the x intersection point x1 in terms of θ and constant x0

as seen in equation (4.42).

tan (θ)x1 =
1

tan (θ)
(x1 − x0)

x1 =
x0

tan2 (θ) + 1

(4.42)

Then, we seek to define point y1 in terms of θ and constant x0 as seen in equation (4.43)

72

using substitution from equation (4.42).

y1 = tan(θ)x1

y1 =
tan(θ)x0

tan2 (θ) + 1

(4.43)

The Euclidean distance, d =
√

(x0 − x1)2 + (0− y1)2, represents error defined in terms

of θ and constant x0; this requires substitution and some algebra seen in equation (4.44).

d =
√

(x0 − x1)2 + (y0 − 0)2

d =

√(
x0 −

x0

tan2 (θ) + 1

)2

+

(
0− tan(θ)x0

tan2 (θ) + 1

)2

d =

√
x2

0 +
x2

0

(tan2 (θ) + 1)2
− 2x2

0

tan2 (θ) + 1
+

tan2(θ)x2
0

(tan2 (θ) + 1)2

d =

√
x2

0 +

(
1 +

1− 2(tan2 (θ) + 1) + tan2 (θ)

(tan2 (θ) + 1)2

)

d = |x0|

√
1− 2 tan2(θ)− 2 + tan2(θ) + tan4(θ) + 2 tan2(θ) + 1

(tan2 (θ) + 1)(tan2 (θ) + 1)

d = |x0|

√
tan2(θ)

tan2 (θ) + 1

(4.44)

To ensure convex optimization, the distance measurements are squared. Thus, the ideal

error equations for the translation case (labeled et) and for the rotational case (labeled er)

are seen in equation (4.45) and visualized in 4.8:

el = (∆x)2 + (m∆x)2

er = x2
0

tan2(θ)

tan2 (θ) + 1

(4.45)

73

Figure 4.8: The ideal error functions calculated for each individual function

The ideal equations for the error functions are validated in figure 4.8 where each individual

error function is calculated for a particular variable. To validate these error functions, the

vertices of a cube were projected onto image planes. The camera extrinsic parameters were

changed one at a time with small step sizes and the squared linear error was calculated at

each step. Here the x linear sensitivity represents a change in the camera’s x position (thus

∆x is linear sensitivity) and a change in angle represents the camera’s angular sensitivity

(thus ∆θ is angular sensitivity). The functions computed match the derived ideal case, even

when computed on more complex datasets.

74

Chapter 5

Distributed Computation with

Satellites

Distributed computation with satellites is, for the most part, limited by the communica-

tions constraints of the satellite systems. Though these constraints are a serious concern,

there have recently been significant advances which may relieve communications bottlenecks

enough so that distributed computation can be demonstrated on small satellites. Laser

cross-link and high frequency bands, such as Ka-band and X-band, have seen promising

advances which guarantee megabit to gigabit speeds. Additionally, satellite constellations,

such as the Starlink, promis the development of wide area internet connections from satellite

systems. For these reasons the focus of this research is not the feasibility of distributed

communications, but rather the implementation of such communications over a traditional

network stack. The management software written for this thesis is known as the SSRL

Swarm Network Manager, or just SSRL swarmnet.

75

5.1 Networking Assumptions

This research assumes that the individual agents (the small satellites) within the swarm

network are capable of communication over an internet-like stack, such as the OSI (Open

Systems Interconnection) model and the TCP/IP (Transmission Control Protocol / Internet

Protocol) model which is also known as the Internet Protocol (IP) suite. Though the swarm-

net could support the OSI model, it was designed for use with the Internet Protocol version

4 (IPv4). Additionally, the swarm communications software assumes that all internet layer,

link layer, and further lower layers are inherently supported and/or implemented by the

operating system and/or satellite hardware. Consequently, ARP (Address Resolution Pro-

tocol) and routing are assumed to be features of the network that are abstracted away from

individual agents. Furthermore, it is assumed that a network router is capable of managing

multicast groups and can send an IP multicast over the internet layer.

The software assumes that all communications external to the satellite are accessible via

a POSIX (Portable Operating System Interface) compliant API (Application Programming

Interface). Thus, the network is accessible via the ISO C Library and C++ Standard Library

calls so that the use of datagram sockets, stream sockets, and raw sockets are all supported.

It is also assumed that the system will have ample access to port assignment and is capable

of multi threading. Lastly, it is assumed that all agents run the same software packages and

have knowledge of the internal state possibilities of every member of the swarm, their the

relevant communication ports, and are thus homogenous.

These assumptions are made for three primary reasons:

1. Satellite communications hardware is developing rapidly and is outside of the scope of

this research.

2. Future hardware is likely to adopt the common standards of internet communications.

76

3. The SSRL Swarm Network Manager is a proof of concept library.

5.2 Satellite Swarm Architecture

Though the satellite swarm architecture of the SSRL Swarm Network is currently single

purpose, the methods described within this section are generalized for any application. All

that is necessary to adapt the SSRL Swarm Network Manager to alternate applications is

a modification of the state table, of which all agents have a local copy. After a state table

modification, the logic of the swarm net can be used for data and telemetry sharing among

the swarm network.

5.2.1 Agent Level Architecture

To join a swarm network an agent begins by joining a predefined multicast group at an IP

address within the range 224.0.0.0 - 224.0.0.255. There can be many multicast groups,

but the agent may only join one at a time. It is expected that the programmer has divided

the multicast groups by purpose, for the use case described here only one group is used,

which is at the default 244.0.0.1. Each agent has a specific state As which is encoded

as a byte and can be determined via a lookup table. Additionally, each agent also has an

internal member struct which contains a 16 byte string from the agent’s name, the agent’s

state byte, and the agent’s 4 byte IPv4 address. These member structs are multicast to

every member of the swarm network at a predefined frequency, though the programmer may

change this frequency when initiating the agent. The primary purpose of the multicast group

is to distribute telemetry, device information, and IPv4 information to the members of the

multicast group. The most commonly shared information is the member struct, though other

telemetry can be shared. This information is delivered via a UDP packet with a payload of

only 37 bytes. All agents make decisions based off of the information stored within these

77

packets. Should the program receives a SIG INT or other shutdown message, the swarm net

manager will multicast that the agent is unavailable. If an agent has not communicated to

the multicast group within a predefined amount of time, then the members of that group

also consider that agent unavailable.

Figure 5.1: An example swarm join, where agent A multicats to join the swarm. The other
agents in the swarm ACK with their member structs; agent A only updates its member
struct after receiving its own JOIN.

Independent from the frequent state multicast, which runs in a separate thread, when

an agent changes state it also multicasts the new state. This is done so that there is no

delay between the agent’s internal knowledge of its state change and the group’s knowledge

of the agent’s state change. Relying only on the frequent state multicast could cause state

mismatches between the group or an agent. Additionally, it would allow for an intermediary

state, which the agent is only in briefly, to be missed by the group. Thus, a new thread is

created and then destroyed to handle an adhoc state multicast. Such intermediary cases are

not edge cases, as I will mention briefly in the following section, and are used to synchronize

agents when cooperating. When in a particular intermediary synchronization state, an agent

will open up a TCP socket for high volume data transmission.

78

5.2.2 Concept of Operations

The SSRL Swarm Net exists for multi agent cooperation to demonstrate how the MOCI

software can scale to several satellite systems. Thus, the state tables which all agents hold

internally are derived from MOCI’s computer vision pipeline and the applications of that

pipeline. Application specific states have been developed around the stages of MOCI’s

computer vision pipeline. Unlike MOCI, the Concept of Operations is defined at the swarm

level. This is preferable for autonomy, as the benefits of satellite swarms are most clear when

those swarms can be scaled effectively.

It is important to differentiate scenarios where swarm communication improves the

group’s 3D models and scenarios where communication cannot improve the group’s 3D mod-

els. I consider an improved group 3D model to be a point cloud which is either larger in

contiguous geographic footprint, has improved measurement accuracy, or both. To improve

models or to join models into larger ones, there must be shared relevant information from

the satellite systems. That information comes from measurements taken by the imaging

systems. Thus, image overlap is the primary factor to consider when identifying scenarios

for collaboration. There are three distinct scenarios I consider: A scenario where communi-

cation does not produce improved global models but local models can still be produced, a

scenario where communication improves both local and global models, and a scenario where

local models are impossible but global models are.

In addition to observation scenarios, there are also distinct stages within MOCI’s 3D

reconstruction pipeline where distribution is beneficial and where it is not. Stages which

benefit most are feature generation, feature matching, and bundle adjustment; all other

stages of the pipeline have no clear benefits from distribution. Sharing image information

is not beneficial because the number of images to share may be prohibitively large, though

it is necessary for the agents to share their local camera parameters. After features are

detected and extracted, agents can share their relevant features with other agents so that

79

Figure 5.2: The directional arrows represent the flow of information between two agents who
are cooperating.

cooperative matching can begin. In cooperative matching, the agents identify shared features

and features from the other agents which match with locally available features. The agents

run this independently and share their resulting matches with one another.

80

Chapter 6

Experiments and Results

The following chapter focuses on testing SSRLCV against the VSFM (Visual Structure from

Motion) software package, NASA STRM data sets, ASTER datasets, and Google Earth Im-

agery. At the beginning of this research endeavor it was not clear that 3D reconstruction

from LEO could work within the constraints of a cube satellite. The next section focuses

on how I discovered what parameters needed to be tested, what objects could be feasibly

reconstructed from orbit, and how existing technologies could be improved for this use case.

Essentially, VSFM showed that SIFT feature detection and matching paired with triangu-

lation and bundle adjustment could serve as a feasible pipeline for 3D reconstruction. The

SSRLCV library was designed by considering how the initial VSFM results could be im-

proved; the inner functions of SSRLCV are described in detail in chapter 4. SSRLCV uses

a custom GPU accelerated SIFT implementation, matching, triangulation, filtering, and

bundle adjustment.

The MOCI cube satellite requirements evolved, and became more strict, with the de-

velopment of SSRLCV. At first MOCI was a 3U satellite with an optical system operating

at 60 meters GSD. After initial simulations showed this configuration did not meet mission

requirements, MOCI became a 6U satellite where an entire 3U is now used for an optical

81

system that operates at about 6.6 meters GSD. Diagrams of the MOCI system can be seen

in chapter 2. It also became clear that a modified miniature GPU system would be ideal

for onboard reconstruction. This system uses a custom PCB for the integration of a Nvidia

TX2i into a cube satellite bus and is described in chapter 3. All tests after initial feasibility

focus on that system.

6.1 Initial Feasibility with VSFM

The fundamental concept of the Multiview Onboard Computational Imager, MOCI, relies

on the feasibility of Structure from Motion (SfM) from Low Earth Orbit. If this concept does

not prove feasible, then the MOCI mission cannot be successful. Fortunately, it seems that

this concept can be achieved by building on the foundations of some existing technologies

and the methods mentioned in chapters 3 and 4. In this section I seek to quantify the initial

feasibility of SfM with these technologies and explore alternative 3D reconstruction methods.

The reconstruction of the 3D geometry of objects, including the generation of point

clouds, employs image processing concepts dating back to the 1950s. In traditional stereo

photogrammetry, 3D structure was resolved from a series of overlapping, offset images. How-

ever, in order to produce usable models, knowledge of scene geometry, camera parameters,

camera orientation, and ground control point (GCP) targets were required. I initially tested

SfM, which differs from traditional photogrammetry because it does not require ground con-

trol, reference targets, or a prior knowledge of the camera exposure locations and attitudes.

Instead, the geometry of the camera/scene parameters is resolved automatically with very lit-

tle, if any, user interaction. The approach originated in the computer vision community and

incorporates automatic feature detection and feature matching algorithms [44][49]. By using

multiple overlapping images, most implementations of SfM incorporate simultaneous, highly

redundant, iterative bundle adjustment procedures after extracting a set of features auto-

82

matically. As a result, very accurate point matching between photographs can be achieved,

and a dense point cloud can be extracted. Previous SfM technique use in photogrammetry

worked best with sets of highly overlapping images, with about 80% overlap, that capture

the full 3D structure of a scene viewed from a wide array of positions [50].

Although internally consistent, models derived from SfM typically lack scale and orienta-

tion provided by GCPs. Consequently, resulting 3D point clouds are generated in a relative

image-space coordinate system. Data must be aligned to a real-world, object-space coordi-

nate system through the use of onboard GPS or georeferencing of ground based objects. A

multidimensional data adjustment can be achieved by 3D similarity transforms using a few

GCPs measured using known control points or GPS coordinates after the model is complete.

The corresponding processing workflow would then include the consideration of a known con-

trol point and the definition of direction and dimension. In addition, control point insertion

may involve the integration of 3D points measured on photos into the model solution.

Several software solutions exist to process a series of images and generate a point cloud

dataset. Implementations include cloud based (Autodesk 123D Catch), free (as in price)

software (Visual SfM/CMVS), open source (Meshlab, Insight3D), and commercial (Agisoft

PhotoScan, Eos Systems PhotoModeler, University of Stuttgart SURE).

To first test the feasibility of the MOCI mission, open source options were used because

of their adaptability. Additionally, to achieve multiple image angles MOCI will pivot as it

approaches, passes over, and moves away from a target in question. This is not strictly

necessary, but provides a method to vary image overlap percentage. When combined with

image acquisition rates, this allows for multiple overlapping images, the key constraint in

SfM and 3D construction from images. Finally, the onboard GPS and propagator will allow

for images to be mapped on a usable coordinate system therefore providing GCPs for data

analysis.

Initial feasibility tests of SfM in LEO were modeled with graphical simulations. The

83

concept was as follows: The Blender software package was used to generate a model of the

Earth to scale. Other objects were also placed on the surface of the model. These objects

were placed at scale, typically the size of mountain ranges. A camera, at the altitude of the

satellite, was made to orbit the Earth, passing over the desired object or set of objects. The

simulation allows the optical properties of this camera to be manipulated thus simulating

the properties of essentially any optical system (within the constraints of a pinhole camera

model). In the first case, I model the optical properties of GomSpace’s NanoCam 1U, the

camera initially selected for the MOCI mission. This camera has a 2048x1536 pixel array

and has a GSD of about 60 meters per pixel. Blender then used this camera to take a series

of images, mimicking the orbital imaging platform.

SfM was then performed on these images. Several tests were performed using the VSFM

software developed by Chang Chang Wu [51]. Computer vision techniques involving image-

based 3D modeling and Structure from Motion (SfM) were used to recreate the geometry

of photograph acquisition and to reconstruct the 3D geometry of the Blender simulated

imagers. SfM extracts (x, y, z) coordinates of objects that can be identified in more than one

photograph and allows for the creation of textured models of the landscape. Algorithms for

correspondence analysis and tie point identification (tie points are the photogrammetric term

for matched feature points) usually employ a gradient descent based approach. These should

not be affected by rotations of the camera positions, orientations of the camera positions,

or scale of the image. This is known as rotation, affine, and scale invariance. Rotation and

affine invariance were solved in the late 1980s but scale invariance was not solved until the

invention of the SIFT feature detector and descriptor (e.g., SIFT - Scale-Invariant Feature

Transform). The features resulting from this method show little or no change based oN-

viewpoint or illumination, thus are very useful for point matching [45]. The SIFT method

provides a set of image descriptors that each have an associated location; these descriptors

obtained from two images form a set of keypoints. Based on the Euclidean distance between

84

Figure 6.1: A 3D reconstruction of cloud tops, generated with VSFM, from images taken by
the crew out of porthole windows. The point could consist of 301, 249 vertices.

matching point descriptors in the two images alone, up to 90% of incorrect key points are

removed [52]. As a result, there is no need for rotating photographs and adjusting their scale

during the pre-processing step of the workflow.

6.1.1 Initial VSFM Results

Before any quantifiable tests were performed, I performed SfM on some sample data sets

that we thought might prove promising. Images from the Expedition 47 crew on board the

International Space Station were used to generate a dense point cloud in Visual SfM. The

sequence of shots was taken on March 25, 2016 from 11:45:02 to 11:57:17 GMT on a pass

over the ocean with very dense cloud cover; this was thought to be an ideal image set for

initial tests [53]. The set consisted of 30 images and Visual SfM was able to produce a dense

point cloud of 301, 249 vertices.

Note that Visual SfM, as can be seen in figure 6.1, was able to distinguish several cloud

layers in the upper atmosphere. Given that “anvil top” clouds, a nickname given to very

large cumulonimbus clouds, have height between 6 km and 15 km, we can at least confirm

85

that SfM can distinguish a height differential of at least 15 km [54][55]. This of course de-

pends fundamentally on the camera’s spatial resolution but happily demonstrated promising

results. Furthermore, the NC1U camera which MOCI was initially slated to use was dis-

carded due to poor simulation results and a new camera was designed. The initial Blender

simulations (done in late 2016) were only able to reconstruct objects on the scale of 10km

while in a 400km orbit. Considering Mount Everest is about 8.8 km, this was unacceptable

for the mission and is what led the mission to seek a custom optical system. The current

optical system is briefly described in chapter 2 and will be used as a baseline in later sections.

There were, however, already significant issues with this initial point cloud and its com-

putation. One such issue involves the computational power needed to calculate the point

cloud. The above cloud was computed in 14 minutes on a PC with an NVidia GTX 980

graphics card. The graphics card on this system requires 165 Watts of power, produces a

maximum temperature of 98 degrees Celsius [56], and cools convectively with a fan at sea-

level atmospheric conditions. In late 2016, it was clear that this type of processing was not

possible with existing 3U or 6U cube satellite hardware. Not only is this computationally

difficult for a small satellite to handle, it also poses significant thermal risks, considering

it will likely take more than 14 minutes to compute a similar cloud. In 2016 I concluded

that the SSRL should place high priority on the design/development of a GPU for its MOCI

satellite, as this presented significant challenges. Results from this system are discussed later

in this chapter.

Another significant issue regarding the feasibility of on orbit 3D reconstruct is in regards

to the already generated point cloud. In figure 6.1, and seen even more clearly in figure 6.2,

there are artifacts of SfM processing, strange streaks of points high above the rest of the

point cloud. It turns out that these streaks of points radiate out of each camera’s position

along the same direction that the camera’s vector was pointing. Noise removal methods

would be needed if accurate 3D reconstructions are to be obtained.

86

Figure 6.2: Noise radiating from cameras at the Space Station’s position; this can cause
issues while attempting to generate accurate 3D reconstructions.

At first, tests were primarily conducted by placing simple geometric solids on a roughly

textured Earth while the Blender camera was made to move in a circular orbit at 400 km.

VSFM was then used to generate a dense point cloud from those images, and next we used

MeshLab to make a textured 3D mesh of the target and its surrounding area. At the time

of this test SSRLCV was not developed and I had not yet convinced myself of the need to

develop custom reconstruction software.

Figure 6.3: Simple geometric shapes being imaged with a 60m GSD imager from a 400 km
orbit.

At this point the primary concern was image number, as it was previously believed that

image number was a primary contributor to model quality (SSRLCV shows that this is not

the case). Various image numbers were tested at various start and stop angles, producing a

total of 22 test cases. An example initial simulation can be seen in figure 6.5.

87

Figure 6.4: An initial reconstruction with VSFM of simple geometry on the surface of a
simulated body at a 400 km altitude. Camera position and orientation errors can be seen, as
the camera path does not follow the arc of a circular orbit (especially on approach to nadir
facing).

Figure 6.5: A full reconstruction of simple geometry with VSFM, showing that the scales
used in orbital reconstruction were not outside the scope of common, openly available 3D
reconstruction methods.

6.1.2 Stereo Disparity

To limit unknowns and have greater control over camera parameters, the images used to test

our algorithms were simulated. These images were also produced with Blender, a standard

3D modeling software for animators, and utilized terrain data from the ASTERv3 global

DEM [57]. Stereo disparity was calculated from a worst case low resolution (approximately

88

(a) Error distribution of best-fit feature
descriptors without subpixel interpola-
tion of feature vectors.

(b) Error distribution of best-fit feature
descriptors with subpixel interpolation
of feature vectors.

Figure 6.6: A demonstration of the improved errors when using subpixel interpolation meth-
ods in stereo disparity

315m GSD) simulation of Mount Everest imagery. The dense matching scheme for this image

pair was naive brute force minimization matching at full pixel scale - there was no subpixel

matching applied.

The histogram of best-fit match errors, shown in figure 6.6, shows how often differences

between the sum of absolute differences (SAD) of feature vectors occur. The goal of the

scale space transformations, described in section 2, is to decrease the magnitude of best-fit

match errors so that subpixel matching can be more effective. The goal of the subpixel

interpolation, described in section 4, is to move the histogram of SAD values towards the

left (lowering error). The SAD is used over the sum of squared differences (SSD) because

it better illustrates the magnitude of feature mismatching. The histograms in figure 6 and

Figure 7 show a clear improvement when subpixel dense matching is used. This data is

further illustrated in Table 2 below.

One significant difference between our method and the standard SIFT approach is that

89

Measure Full Pixel Value Subpixel Value

Average 1699 1157
Std. Dev. 723 451

Max 6050 2611
Min 136 136

Table 6.1: Statistical values of the SAD of best-fit feature vectors

Figure 6.7: A disparity map of Mount Everest calculated with our dense sift matches

we can generate (n−18)2 features for an image. For the 254 x 254 image, 60, 025 features are

generated. A standard SIFT approach used on the same data set (with default setting from

the anatomy of SIFT implementation) only generates 690 features [46]. One downside to

using our dense SIFT version is that our matches are less stable. However, if it is known that

sequential images contain significant overlap (as is in our test cases), then there is a benefit

to utilizing dense SIFT because a certain amount of image correspondence is expected.

For example, dense SIFT can allow for stereo disparity rather than stereo multi-view and

reprojection, greatly simplifying computer vision pipelines [58][21]. Stereo disparity, though

it is not the focus of SSRLCV, can be desirable because it can be easily implemented on

smaller, less optically complex cube satellites.

90

(a) The GeoTIFF height raster (b) The PLY conversion

Figure 6.8: The Nevado Ojos del Salado Volcano in the Andes Mountain, the second highest
mountain in the Western and Southern Hemisphere.

6.2 SSRLCV Simulations with Blender

Initial tests relied on manually importing 3D meshes into Blender. These models were gener-

ated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

Global Digital Elevation Model version 3 (GDEMv3). ASTER GDEMv3 is released as a Geo-

TIFF, which is a Tagged Image File Format (TIFF) raster encoding for images with extra

georeferencing information (defined by the Open Geospatial Consortium). At the time of

writing, current versions of Blender poorly supported GeoTIFF importing. As a result, I had

to write some simple scripts to convert the image into a 3D model. Thus, I converted the

height information to a mesh encoded as a PLY. Later, using the georeferencing information

encoded in the GeoTIFF, an image from Google Earth Engine was applied to texture the

mesh in Blender.

The resulting ASTER meshes are between 15 and 90 meters in resolution, which means

a given polygon face is a square 15m2 to a square 90m2. The resolution used for the manual

ASTER to Blender testing is 30 meters. The rationale here was that, despite the models only

being accurate within 30 meters, because the PLY format linearly interpolates the height

91

point locations in the raster it is possible to test for sub-30 meter accuracy. This means it

is possible to generate a higher resolution model in the areas between raster height points.

Additionally, the ASTER GeoTIFF and its resultant mesh can be viewed as a ground truth

because the primary goal is to calculate height on a given surface. Different reconstruction

methods can be compared by testing these same data sets with different methods.

In addition to testing ASTER models in Blender, other publicly available models can

also be tested with the aid of the BlenderGIS addon. The addon is superb for isolating given

regions of Earth and generating high quality textured meshes. The workflow for generating

BlenderGIS models is much faster than generating models manually from ASTER GeoTIFFs;

the model resolutions are often better, the textures used are often higher resolution, and they

contain Earth curvature correction. Because of this ease, BlenderGIS is used for nearly all

tests. The texture and model sources used in BlenderGIS vary, with elevation models coming

from the NASA Shuttle Radar Topography Mission (SRTM) and textures coming from aerial

satellite imagery (monetarily) acquired by Google.

(a) An Everest Render-
ing at nadir

(b) An Everest Render-
ing at −10◦ off nadir

(c) An Everest Render-
ing at 10◦ off nadir

Figure 6.9: Example renderings of Mount Everest with real satellite data, aquired by Google
and generated with the BlenderGIS addon. These images were simulated from a 400km
circular orbit.

An additional advantage of using the BlenderGIS addon, instead of manually adding

3D models and textures, is that the Google imagery used is very high quality and scales

92

well to variable GSDs when modeling camera systems in orbit. Furthermore, the simulated

images were generated with orientations from a slew maneuver where the camera was always

looking at a fixed point on the ground. Examples can be seen in figure 6.9. This was done to

ensure image overlap and have fine control over viewing angles. These simulations assumed

a circular orbit of 400km and the desire was to input a certain θ viewing angle and output

the satellite’s orbital position at that viewing angle.

T θ

S0

û0

S1

û1

α

Figure 6.10: An example scenario showing the orbital plane where S0 is the satellite looking
nadir and S1 is the new off-angle of the satellite. Here we desire to compute the rotation α
with respect to the orbit center that S1 should rotate (the local rotation θ is known) so that
it is looking at the tracking point T .

First, consider that we need only look within the orbital plane of the satellite. To calculate

the satellite’s position within this orbital plane, we first consider the equation of a sphere

with the radius of Earth, re, in km then consider the satellite has an orbit of h km above the

surface of Earth. Next, consider the equation of a line with slope m = tan(θ − π
2
) where θ

is the desired imaging angle. Substitution and distribution (note that all terms but x and y

are constant) result in the quadratic seen in equation (6.1) which can be solved for the (x, y)

position of the satellite within its orbital plane. I choose to define the tracking location T

as the origin for simplicity.

93

x2 + (y − re)2 = (h+ re)
2

y = tan(θ − π

2
)x

x2 + (tan(θ − π

2
)x− re)2 = (h+ re)

2

x2 + (tan(θ − π

2
)x)2 − 2retan(θ − π

2
)x+ (r2

e − (h+ re)
2) = 0

(1 + tan(θ − π

2
)2)x2 − 2retan(θ − π

2
)x+ (r2

e − (h+ re)
2) = 0

(6.1)

If one wishes to calculate the angle α in refrence to the orbiting bodies center of mass,

simply use equation (6.2) below:

α = arcsin

(
x

re + h

)
(6.2)

Given the orbital inclination, the point can be translated then rotated into its intended

position. A simple python script (located in the SSRLCV utility repository) named

track camera gen.py, was written to solve this and the output of that script is used as

position and orientation data for the BlenderGIS simulations. From this information slew

times, orbital arc lengths, and ground track lengths can be generated. If a circular orbit

is assumed and a constant radius for earth can be considered accurate, the the simple arc

length formula Lground = αre can be used to find the ground track. Similarly, the formula

Lorbit = α(re + h) can be used to find the orbit length. The velocity of a given orbit (using

the assumtion that the mass of the cubesat is negligible) is caclulated with the equation

(6.3) below:

v ≈
√
GM

r
(6.3)

In equation (6.3) the radius r is the combined altitude and earth radius, so r = re + h.

94

The standard gravitational paramter is G ·M and is commonly used. Using the velocity v

of the orbit, the time of a pass is caclulated simply with the equation t = Lorbit

v
. The slew

rate can be caclualted simply with the equation vslew = θ
t

for a slew to nadir or vslew = 2 θ
t

a

slew at the starting a angle θ. Nadir pointing, rather than point tracking, can be caclulated

in a similar way; to caclulate a nadir slew simply use the angle α instead of θ.

Altitude (km) θ◦ (deg) time (s) track slew rate (θ◦/s) nadir slew rate (α◦/s)
400 5◦ 4.5624 1.0959 0.0648
400 10◦ 9.1890 1.0882 0.0648
400 15◦ 13.9474 1.0754 0.0648
400 20◦ 18.9126 1.0574 0.0648
400 25◦ 24.1717 1.0342 0.0648
450 5◦ 5.1515 0.9705 0.0641
450 10◦ 10.3746 0.9638 0.0641
450 15◦ 15.7449 0.9526 0.0641
450 20◦ 21.3458 0.9369 0.0641
450 25◦ 27.2741 0.9166 0.0641
500 5◦ 5.7446 0.8703 0.0634
500 10◦ 11.5683 0.8644 0.0634
500 15◦ 17.5542 0.8544 0.0634
500 20◦ 23.7942 0.8405 0.0634
500 25◦ 30.3943 0.8225 0.0634

Table 6.2: Various slew times for both nadir pointing and point tacking during image aqui-
sition. The off angle θ is the angle seen in diagram 6.10; the times shown here are from the
off angle to the point track nadir position (the surface normal/zenith of the track point).

The slew rates measured in table 6.2 are very achievabl for cube satellites. The Blender-

GIS simulations use some of the various rates ablve. The Everest 2 view and 3 view sets

use the 400 km 10◦ track slew rate. The Everst 5-view test set uses the 400 km 20◦ track

slew rate. The Rainier 2 view and 3 view sets use the 400 km 5◦ track slew rate, while the

Rainier 5-view sets use the 400 km 10◦ track slew rate.

95

6.2.1 Noise Removal

Here I consider noise to be any point which should not be within the pointcloud. Noise

removal is a significant challenge when designing 3D reconstruction algorithms, and for the

SSRLCV it is necessary to remove erroneous 3D points after the initial 3D triangulation.

Points are assigned particular errors, described in section 4.5.1, and can be filtered based on

these errors. The noise is assumed to be Gaussian. A combination of linear cutoff filtering

(removes all points past a certain error) and statistical filtering (removes all points past a

certain multiple of the standard deviation σ in the error distribution) yields very clean point

clouds. Additionally, filtering at the feature matching level should be used. In the context

of the SSRLCV software, this is known as seeding, where an image known to be unrelated

to the satellite images is input as an example to counteract false positives. David Lowe, the

creator of the SIFT algorithm, recommends this approach to improve matching [44] [45]. If

no filtering is done at this stage, then the resultant point clouds are considerably noisier,

thus reconstruction without a seed is never recommended.

Figure 6.11: A visualization of the errors calculated for a 2-view case with filtering at the
feature matching level. Red represents points with errors which are extrema and light teal
represents errors which are close to zero.

When filtering 2-view reconstruction, the benefits of statistical filtering are most evident

wheN-viewing the distribution of errors. The intuition here is to remove the erroneous points

which lay outside of the Gaussian. At first the distribution is quite large, but still densely

packed around the optimal error of zero. It is important to observe that there are very few

96

extremely erroneous points, but those points often contribute significantly to the total error

of the point cloud. In order to perform a proper bundle adjustment, described in chapter 4.5,

such points must be removed; otherwise their collective error may dominate the optimization

resulting in a local minima of noise at the expense of valid points.

Filtering with the N-view case is less successful when only linear cutoff and statistical

filtering are used. At this stage, it is necessary to perform regional density filtering because

statistical filtering still leaves a significant number of noisey points and noise locations are

considerably less dense in structure than the intended point cloud.

Figure 6.12: A visualization of the errors calculated for a 5-view case with filtering at the
feature matching level. Red represents points with errors which are particularly bad and
light teal represents errors which are close to zero.

Dataset Res Views unseeded seeded 3σ filter 2σ filter 1σ filter
Everest 1024 2 538618.1875 506.1283 19.8736 10.6172 6.9021
Everest 1024 3 27499.1660 14654.0087 5474.9116 3766.6467 1601.0681
Everest 1024 5 93405.1875 52093.9765 28640.6523 19155.5859 8549.2802

Table 6.3: Data on error removal correlated to point removal when filtering. Note all statis-
tical filtering occurs after seed filtering, as this is the expected usage.

There is considerably more noise, and thus more error in the cloud, for N-view cases.

Overall the 2-view cases produce less noisy clouds that are about as accurate as the N-view

clouds after filtering. N-view clouds require significantly more filtering to extract a viable

model. This is because the N-view triangulation produces a wider spread of errors than

97

Dataset Res Views unseeded seeded 3σ filter 2σ filter 1σ filter
Everest 1024 2 0.7316 0.2266 0.2105 0.2079 0.2039
Everest 1024 3 0.7136 0.5124 0.4811 0.4646 0.4245
Everest 1024 5 0.7717 0.5796 0.5663 0.5506 0.5093

Table 6.4: Average distance, measured in km, of a point to 6 neighbors at certain error
function filters.

the 2-view triangulation, seen in figure 6.14. This causes statistical filtering to time longer

because it only removes a certain percentage of outliers at a time.

(a) The distribution of linear errors in
a 3-view triangulation.

(b) The distribution of linear errors in
a 2-view triangulation.

Figure 6.13: The difference of error histograms in the N-view and 2-view cases.

6.2.2 Reprojection and Triangulation

The tests with Blender and BlenderGIS seek to provide accuracy measurements which can be

compared with current methods for the computer vision software developed for the MOCI

mission. One of the most commonly cited existing reconstruction methods is the VSFM

software released by Chang Chang Wu. Images rendered in BlenderGIS are output in the

PNG format, but VSFM only accepts the JPG format. Images are converted from PNG

98

to JPG using FFMPEG at its highest conversion setting with the simple command ffmpeg

-i 1.png -qscale:v 1 1.jpg. FFMPEG is a program which can be brew, apt, or yum

installed on your favorite UNIX-like operating system.

The SSRLCV 2-view reconstruction outperforms the VSFM 2-view reconstruction by

producing a more dense initial point cloud and a more accurate initial point cloud. This is

likely due to the fact that SSRLCV requires camera parameters before a reconstruction where

VSFM only estimates the camera parameters. Both SSRLCV and VSFM modify these initial

camera parameters in the bundle adjustment, but SSRLCV starts with estimated camera

parameters which are likely quite accurate and VSFM does not.

Meshlab is used to view the individual point cloud results. The error between the ground

truth model and the initial 2-view point cloud is calculated as a sum of the distances between

individual estimated 2-view points and their intersection with the 3D model below them.

Generally, view number is not correlated with an increase in model resolution for SS-

RLCV, but is correlated with model resolution for VSFM; this can be seen in table 6.5. In

some cases, the noise removal process skews the ground truth error distribution to make the

final SSRLCV model appear worse than it truly is. This effect is seen when the removal of a

small number of points causes the large variance σ to decrease to a reasonable amount. The

Everest 1024 5-view case, seen in table 6.5, has only 31 (only 0.12% of the 24, 901) points

which cause the variance to increase an order of magnitude. This shows the importance

of successive filtering, as these points should be removed during the filtering step. Similar

results can be seen with a 2-view 4096 Everest case, thus successive filtering is necessary for

all cases.

Errors to the ground truth are close in SSRLCV 2-view cases but not in VSFM 2-view

cases. In fact, some VSFM cases fail to generate 3D point clouds because camera parameters

cannot be accurately determined; this can be seen in table 6.5. These errors are visualized

in figure 6.14 where the reconstructed points hug the ground truth. Overall, SSRLCV is

99

Dataset Res V. SSRLCV
Avg. Dist

σSSRLCV NSSRLCV VSFM
Avg. Dist

σV SFM NV SFM

Everest 1024 2 114.603 m 186.709 11, 768 288.296 m 315.317 1, 797
Everest 1024 3 53.8238 m 531.069 13, 131 142.311 m 198.477 5, 993
Everest 1024 5 149.08 m 2842.87 24, 901 78.4359 m 159.465 7, 747
Everest∗ 1024 5 55.3631 m 135.74 24, 870 − − −
Everest 4096 2 57.2854 m 1486.79 73, 376 165.679 m 220.515 1, 655
Everest∗ 4096 2 47.2689 m 126.547 73, 233 − − −
Rainier 1024 2 178.548 m 2260.29 12, 888 failed failed failed
Rainier 1024 3 135.168 m 793.099 13, 357 failed failed failed
Rainier 1024 5 121.992 m 481.374 24, 005 263.361 m 368.128 224
Rainier 4096 2 101.204 m 2322.29 154, 280 failed failed failed

Table 6.5: Initial reconstructions, compared by average error to the ground truth and the
sigma value of the error distribution. The number of points in the clouds is also provided.
Cloud Compare’s Iterative Closest Point (ICP) implementation was used to calculate the
errors shown above. In some cases VSFM failed to produce a point cloud. Results with a ∗
were manually filtered after automatic filtering to show the ideal results of SSRLCV (VSFM
results require no filtering and are thus already ideal and marked with ”− ”; results in the
row above should be used to compare).

(a) A 2-view 4096 × 4096 SSRLCV
Everest reconstruction compared to the
ground truth model.

(b) A 5-view 1024× 1024 VSFM everest
reconstruction compared to the ground
truth model.

Figure 6.14: Here SSRLCV and VSFM are shown being compared to the NASA STRM data,
used as a ground truth comparison.

both more dense and more accurate than VSFM. VSFM produces no noise in any model,

but does so at the expense of generating dense points. SSRLCV generates as many points

100

as possible and allows the user of the pipeline to filter points at any stage. The benefit of

such a design choice is accuracy, but the propagation of erroneous points into further stages

of the pipeline can have tremendous consequences; this is explored in the next section.

Figure 6.15: A 2 view reconstruction of 4096 x 4096 images of Mount Everest simulated at
a 400 km ISS-like orbit; here the red points represent points with errors to the ground truth
at or above 300 meters; the yellow represents errors around 150 meters and light teal color
represents errors approaching zero.

The reconstructions from simulated Everest imagery work quite well, though an unex-

pected result was the larger errors at the peaks and higher altitudes as seen in figure 6.15.

The figure also shows how the errors closer to the ground surface are better; this may be

partially explained by the fact that the imagery used to perform the reconstruction is higher

resolution than the Shuttle Radar Topography Mission (SRTM) which was used to compute

the ground truth. This may also be explained by the fact that accurate regions tend to be

more dense and not contain low density regions. The tips of the mountain contain regions of

very low density and may be contributing to the error. VSFM produces a very sparse cloud

at all locations, with almost no points at the sparse high altitudes of SSRLCV.

101

6.2.3 Bundle Adjustment

To test the Bundle Adjustment, noise was added to camera parameters so that the opti-

mization could be observed. The Bundle Adjustment does improve the linear error of the

point cloud but seems to get stuck in local minima. It is important to note that points and

position estimation cannot be decoupled in the real world usage of MOCI, thus pointing

estimation and position estimation are always considered together. Error values in position

are from SGP4 and TLE various, which can diverge from the true location by up to 1 km a

day [59].

Initial
Error

1σ Starting
Error

Ending
Error

Agv.
Iter.

Avg.
Good
Iter.

Avg.
Good
Result

Success

Everest 1024, 2 View, 10 tests at 200 max iterations
6.9021 x± 250 m

y ± 250 m
z ± 250 m
θx ± 0.00053
θy ± 0.00053
θz ± 0.00053

1354.9344 924.0120 65 85 13.1173 30%

Everest 4096, 2 View, 5 tests at 200 max iterations
506.7010 x± 250 m

y ± 250 m
z ± 250 m
θx ± 0.00053
θy ± 0.00053
θz ± 0.00053

3776.0946 2399.1825 51 85 621.0281 60%

Table 6.6: Initial bundle adjustment results where a noise vector is added to the camera
parameters of one view in the set. Noise is added where the mean value is µ = 0 and σ is
defined as a positive and negative range. Error values are measured in Average Linear Error,
mentioned in section on bundle adjustment in chapter 4. Each row was repeated several times
with random noise added within the specified parameters. Successes, emasured in the right
hand column, are tests that reach within 2× the global optima.

Iterations can be seen in graphs 6.16, where noise was added as described in table 6.6.

Convergence in not always guaranteed, which could be caused by some of the following issues:

102

improper definitions of error functions (perhaps the functions are not properly designed

for convex optimization), floating point error associated with camera parameters, errors

associated with the discrete approximation of the gradient and Hessian, or an elusive bug.

(a) 10 bundle adjustment tests run with
noise from table 6.6; the values graphed
here show the first tests in the table.

(b) 5 bundle adjustment tests run with
noise from table 6.6; the values graphed
here show the second tests in the table.

Figure 6.16: Here two batches of bundle adjustments are tested. Unfortunately, convergence
seems less likely than desired, only occurring in some cases. The blue cases show convergence
to the optima shown as an orange line, with the x axis representing the number of iterations.
Bundle adjustment currently returns once a local minima is found.

Image size is not a contributor to bundle adjustment convergence; the largest factor seems

to be the error values that are given as noise parameters. When the noise parameters are

large, they result in a less optimal starting position for the bundle adjustment. Poor starting

locations can be seen at the top of graph 6.16a, where only 1
7

tests converged. On the other

hand, locations at the bottom of the graph converged in 2
3

cases. The 4096 case is similar,

where lower errors converged but only some higher errors converged. However, because the

sample size is small, these tests may not indicate any overall trend, though it is expected

that noise closer to the real camera parameters should make convergence easier.

103

6.3 Pipeline Timing

The execution times of various pipelines in SSRLCV depend on the number of input images.

More precisely, the execution times are bottlenecked by feature generation, feature matching,

and bundle adjustment. Triangulation, filtering, and point normal estimation all occur very

quickly. File IO is fast and not a major factor in execution time; it is essentially negligible.

The tests seen in table 6.7 were run on an Nvidia TX2i.

Dataset Res Views Feat. Mat. Tri. Filt. B.A. Total
Everest 1024 2 27.045 s 47.421 s 0.121 s 0.635 s 115.02 s 199.69 s
Everest 1024 3 40.365 s 176.556 s 0.155 s 2.852 s − 230.043 s
Everest 1024 5 66.994 s 436.103 s 0.285 s 3.28 s − 699.498 s
Everest 4096 2 352.404 s 1091.193 s 0.61 s 3.28 s 699.498 2156.436 s
Rainier 1024 2 26.692 s 40.238 s 0.101 s 0.622 s 110.4 s 183.92 s
Rainier 1024 3 40.374 s 157.101 s 0.165 s 2.768 s − 210.058 s
Rainier 1024 5 67.558 s 413.127 s 0.276 s 5.188 s − 495.883 s
Rainier 4096 2 389.809 s 3309.492 s 1.189 s 6.601 s 1443.502s 5159.922 s

Table 6.7: Runtimes for given sections of the pipeline on given datasets. Bundle adjustment
was limited to 10 iterations and only tested on 2-view cases. In cells marked with ”− ” no
bundle adjustment was run. Total runtime is listed on the right and may be slightly more
than the individual sum due to small operations between pipeline stages. The total time
also includes seed image feature generation. The same seed image was used for all tests (it
runs in ≈ 9.448 seconds).

The MOCI mission is expected to process datasets which are closest to the Everest 4096

and Rainier 4096 sets used in table 6.7. The tests above indicate that MOCI’s operations

may take anywhere from 35 minutes to 1.4 hours. The sets above were selected because they

are expected to yield best and worst case results for timing. The Everest dataset represents

a best case computation for MOCI, where the low contrast of the snowy grey mountains

would produce fewer features than the green high contrast Rainier dataset. One should note

that the number of points in the point cloud is the same as the number of matches not

filtered. The point number comparison of Rainier and Everest in table 6.5 shows that the

104

Rainier dataset generated about 2.1× more points than the Everest dataset. A common

MOCI dataset will be somewhere in between these two examples.

The primary bottlenecks of the MOCI pipeline are Bundle Adjustment, Feature Match-

ing, and Feature Generation. MOCI will likely not be capable of running a full pipeline at

once, the payload will likely have to shut down and restart the pipeline at a given stage.

Feature generation can be checkpointed after each image’s features are generated. Bundle

Adjustment can be checkpointed after each Newtonian iteration. Matching cannot currently

be checkpointed, though it is possible to do by adding on to the existing SSRLCV library.

6.4 Hardware Experiments

Individual cores can be shut off with the command sudo nvpmodel N where N is a mode

number defined in table 6.8. The goal of initial experiments is to identify where the CORGI

/ TX2 / TX2i system will have significant power usage. Thermal properties are not modeled,

but could be modeled at a later date by repeating these tests in the UGA SSRL’s thermal

vacuum chamber. Power is measured instead of thermal output because any non-vacuum

measurements of thermal output will be inaccurate. Power, however, is directly correlated

with thermal output and can be used to refine thermal models of the computation unit. For

example, one could assume a 100% power to heat conversion to obtain worst case thermal

models from the data below.

Mode Name Denver 2 Hz ARM A57 Hz GPU Hz
0 Max-N 2 2.0 4 2.0 1.3
1 Max-Q 0 - 4 1.2 0.85
2 Max-P Core-All 2 1.4 4 1.4 1.12
3 Max-P ARMv8 0 - 4 2.0 1.12
4 Max-P ARMv8 1 - 4 2.0 1.12

Table 6.8: Power Modes for the TX2 / TX2i

105

The computer vision pipeline is run in these different power configurations with various

inputs. Additionally, it is required by the MOCI mission that the payload does not exceed

a certain wattage, namely the wattage of MAX-Q. Because the Jetson TX2 has built-in

utilities to monitor power consumption, the power consumption was able to be directly

monitored in an idle state. A logger is provided with the SSRLCV software which can monitor

state transitions, voltage, current, and power consumption over time. Idle computation

level is included and a CSV file is generated as the result of the program. Average power

consumption lies at 3.195 Watts and peak power consumption is always below 8 watts.

Figure 6.17: A 5-view reconstruct of 1024 × 1024 images of Everest showing the power
consumption in milliwatts of the GPU, SOC, and CPU over the time the pipeline is executing.
Tested on a development TX2.

The power graphs seen in 6.17 and 6.18 show the computer vision pipeline over time. The

graphs track the power usage in milliwatts of the 3 primary systems on the Tegra, the SoC,

the GPU, and the CPU. It is important to note that 6.17 and 6.18 do not contain bundle

adjustment calculations in their pipelines. The six power spikes at the beginning of the

pipeline in 6.17 are the result of feature generation; one spike is from the seed image and the

106

Figure 6.18: A 2 view reconstruction with 4096 × 4096 images of Everest showing the
power consumption in milliwatts of the GPU, SOC, and CPU over the time the pipeline is
executing. Tested on a development TX2.

other five spikes from the main images. Surprisingly, feature generation, not matching, is the

most power intensive. The flat sustain of GPU usage come from filtering and triangulation.

The CPU power usage tends to spike during memory transfers to and from the GPU while

the SoC power usage tends to remain constant. The graphs 6.17 and 6.18 were generated

from the TX2 and not the TX2i.

The TX2i produces power results that are almost identical to those of the TX2. These

can be seen in graphs 6.19 and 6.20, but are about a Watt higher at the feature generation

peaks. These results are promising, especially when considering the timing seen in table 6.7.

Whereas Bundle Adjustment or Feature Matching may have initially seemed to be the most

intensive sections of the pipeline, when considering power usage, Feature Generation emerges

as the primary thermal, power, and temporal constraint. Matching and Bundle Adjustment,

though they will run longer on average than Feature Generation, use less than half of the

power. Thus, Matching and Bundle Adjustment will deplete MOCI’s batteries at a slower

rate and generate a less intense thermal load.

107

Figure 6.19: A 5-view reconstruction of 1024 × 1024 images run on the TX2i, the intended
computation unit for the MOCI satellite, showing power usage over time. The power usage
is almost identical to that of the TX2. Power consumption in milliwatts of the GPU, SOC,
and CPU over the time the pipeline is executing.

Figure 6.20: A 2-view reconstruction of 4096 × 4096 images run on the TX2i, the intended
computation unit for the MOCI satellite, showing power usage over time. The power usage
is almost identical to that of the TX2. Power consumption in milliwatts of the GPU, SOC,
and CPU over the time the pipeline is executing.

108

Chapter 7

Conclusion

The results presented in this thesis demonstrate that, unlike previously assumed, the MOCI

satellite does not need to have upwards of 30 images to produce an accurate 3D recon-

struction to satisfy mission requirements. Instead, mission requirements can be met within

reconstruction accuracy bounds with as little as two images. The resutls from prior tests

may considerably relax pointing requirements for the mission. The only instance in which an

image count greater than 2 is significantly beneficial is if the desire is to cover a larger land

area, and thus produce a larger model. In retrospect this is obvious, as most topography uses

2-view methods in combination with long scans. The MRO HiRise instrument is an example

of this, and it is able to produce 3D surface models of Mars at a resolution of 0.25 meters per

pixel. Thus, if the MOCI mission is to improve the end data product, it makes more sense

to explore longer-scale scan like images that can be used to produce larger models. In these

cases it is only necessary to have any given image overlapping with at least 2 more, and no

others, thus forming a chain of overlap. Any additional imagery seems only to contribute to

noise and not stable feature points. An exploration of chained 2-view matching may also be

worthwhile, as the N-view cases produce considerably more noise.

Based on the results in the previous chapter, there are a few new restrictions to the

109

MOCI mission:

• SGP4 Propagator Constraints: Errors due to the onboard SGP4 propagator can

peak at ≈ 1 km error. Very little attention has been given to improving onboard

propagation or correcting the propagation via TLEs or other telemetry in operations.

To ensure optimal convergence on an accurate 3D model during bundle adjustment,

propagation error should be minimized too.

• N-View Reconstruction Time: Even a 3 view reconstruction of 4096 × 4096 im-

ages takes over 3 hours. While MOCI could stop and restart such computations with

checkpointing, this could pose problems because checkpointing cannot occur during

the middle of a feature generation without significant additions to SSRLCV. Feature

generation is the most power intensive stage of the pipeline and doing several long

feature generation cycles will dump significant thermal loads into the system. Thus, if

an N-view reconstruction is desired, MOCI must be capable of stopping (i.e. have the

available power and thermal dissipation capability) after each feature generation and

loading to restart at the next image after some time has passed. A stop and start is

possible with current SSRLV checkpointing, but no analysis has yet been done to show

MOCI has the power and thermal range to sustain several feature generation spikes.

Future SSRL members should seek to test this in the thermal vacuum chamber.

• Sub-Optimal Bundle Adjustment: Unfortunately bundle adjustment is currently

sub-optimal. It is not guaranteed to find a minimum and often when it does, it is

only a local minimum. The MOCI team at the SSRL may choose to accept this and

perform a bundle adjustment when possible. I recommend that quasi-Newton methods

for optimization be explored because I speculate that the finite difference calculations

of the Hessian and the gradient are causing the imperfect results.

• Pipeline Bottlenecks: The SSRLCV pipeline has power, thermal, and temporal

110

bottlenecks. Feature generation is the most intensive stage and is a power, thermal,

and temporal bottleneck. Feature matching is primarily a temporal bottleneck, but

does use about 3 Watts of power for a significant time. Bundle Adjustment is primarily

a temporal bottleneck, but does use about 3 Watts of power for a significant time.

Only some consideration has been given to how to start and restart the pipeline.

Checkpointing is possible, but not widely implemented and certainly not yet widely

tested. Significant development and testing should be done on starting and restarting

the pipeline at the bottlenecks described here.

Based on the results in the previous chapter, there are a few relaxed restrictions on the

MOCI mission:

• Optimality of 2-View Reconstruction: 2-view reconstruction is more than suffi-

cient to achieve MOCI’s mission objectives and the previous requirement of 30 images

for a reconstruction should be relaxed. In fact, N-view reconstructions are currently

just as accurate as 2-view reconstructions, but take much more time to compute and

produce considerably more noise.

• Non-Issue of Slew Maneuvers: The off normal angles MOCI requires to achieve an

accurate 3D reconstruction now range between 5◦ - 20◦ from a previous image, but are

much less strict than previously considered. Thus, MOCI will be able to meet mission

requirements without fast slews.

• Non-Slew Options: To lessen the slew restrictions further, MOCI operators could

consider imaging a desired target on a different orbit rather than on the same orbit. The

research conducted here has uncovered several 3D mapping missions which successfully

produce models from different orbits.

111

• Pointing Jitter: As long as MOCI’s bundle adjustment converges to a local mini-

mum and camera position is accurately estimated. Any jitter in the extrinsic camera

parameters is corrected for in bundle adjustment.

Figure 7.1: The recommended SSRLCV pipeline for the MOCI mission. Checkpointing
should be possible at any stage or intermediate stage.

The tests in this thesis were not performed on a flatsat as is customary in the satellite

design cycle. This is partially because a flatsat would not change the results of the compu-

tation but would make the testing of the computation much harder. I recommend that the

UGA SSRL seek to implement several of the tests laid out in this thesis on a flatsat so that

valuable experience can be gained.

7.1 Limitations of Experiments

The limitations of the experiments here leave much room for future work. No experiments

were performed in vacuum, and the pipeline experiments here could be repeated in the

SSRL vacuum chamber to validate or invalidate thermal models mentioned in this paper.

Additionally, the software was not tested with randomized bit-flips at a rate that would be

consistent with the radiation environment of LEO. Such an environment could be simulated

112

with additional software and may shed light on areas that need improvement. The SSRLCV

software should also be tested on a drone testbed to validate with real-world data acquired

in house, rather than relying on data provided by others.

7.2 Publicly Released Software

The computer vision software demonstrated here, known as SSRLCV, is open source and

will be available on github at https://github.com/uga-ssrl/SSRLCV. The dataset used

will also be publicly available on the UGA SSRL website at

http://smallsat.uga.edu/orbitalReconstructionDataset. The swarm network demon-

stration software is also open source and will be available on github at https://github.

com/piepieninja/SSRL-Swarm-Net.

7.2.1 Future Work

A pushbroom camera model was nearly completed for this thesis research, but I did not have

the time to perfect the model. The MRO HiRISE system uses 2-view reconstructions with

a pushbroom imager to generate the current best 3D models of Mars. It may be possible to

reconstruct 3D models of earth using the SPOC satellite, despite the high GSD.

A GUI, which interfaces with SSRLCV, was partially developed and may still be released

with SSRLCV via github.

7.3 General Considerations for In-Orbit

3D Reconstruction

This research highlights a few key factors of onboard 3D orbital reconstruction with small

satellites. As is true with standard 3D reconstruction, image overlap is fundamental. How-

113

https://github.com/uga-ssrl/SSRLCV
http://smallsat.uga.edu/orbitalReconstructionDataset
https://github.com/piepieninja/SSRL-Swarm-Net
https://github.com/piepieninja/SSRL-Swarm-Net

ever, increasing the number of views does not necessarily increase the accuracy of a final

model. The primary indicator of the accuracy of the final model is the number of matched

points used to triangulate 3D points and the GSD of the imagery used to acquire features.

The more numerous and accurate these matches, the more dense and accurate the final

model. Unfortunately, feature generation and matching can be quite time consuming (even

when using a hardware accelerated platform) because a given feature must often be matched

against all others; any reduction of the matching search space is beneficial. Additionally,

noise in position and orientation estimation is an inevitable consequence of digitizing input

signals; a small amount of noise in position or orientation results in significant triangulation

error due to scale. Thus, formulating the minimization of such noise as an optimization

problem is necessary; in the context of MOCI software this is known as bundle adjustment

and is covered in detail in chapter 4. The bundle adjustment is the most temporally de-

manding operation of 3D reconstruction. Any effort to minimize function evaluations per

iteration, calculate the camera gradient more efficiently, calculate the camera Hessian more

efficiently, or restrict the search space is greatly beneficial.

When considering extensions of such technologies to small satellite swarms, one should

seek to share information only if the information improves models. Thus, sharing features,

collaborating on matching, and some flavor of distributing gradient descent are all highly

likely to be beneficial. No other forms of collaboration are immediately beneficial.

When considering potential hardware improvements, the goal should be to further min-

imize computation time and power usage. FPGA and ASIC technologies offer interesting

paths for future research. SIFT-like feature extraction implemented on ASICs (or FPGAs)

could have considerably lower power usage and significantly faster runtimes than the meth-

ods implemented in this research. Optimization problems may still need the flexibility of a

GPGPU, but shared memory could be used to offload expensive function evaluations to an

FPGA or ASIC.

114

Bibliography

[1] L. Hoddeson, “The discovery of the point-contact transistor,” Historical Studies in

the Physical Sciences, vol. 12, no. 1, pp. 41–76, Jan. 1981. [Online]. Available:

https://doi.org/10.2307/27757489

[2] R. Bassett, To the Digital Age: Research Labs, Start-up Companies, and the

Rise of MOS Technology (Johns Hopkins Studies in the History of Technology).

The Johns Hopkins University Press, may 2007. [Online]. Available: https:

//www.xarg.org/ref/a/0801886392/

[3] H. Helvajian, Small satellites : past, present, and future. El Segundo, Calif. Reston,

Va: Aerospace Press American Institute of Aeronautics and Astronautics, 2008.

[4] J. Guthrie, How to make a spaceship : a band of renegades, an epic race, and the birth

of private space flight. New York: Penguin Press, 2016.

[5] B. Denby and B. Lucia, “Orbital edge computing: Machine inference in space,” IEEE

Computer Architecture Letters, vol. 18, no. 1, pp. 59–62, jan 2019. [Online]. Available:

https://doi.org/10.1109/lca.2019.2907539

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”

IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, oct 2016. [Online].

Available: https://doi.org/10.1109/jiot.2016.2579198

115

https://doi.org/10.2307/27757489
https://www.xarg.org/ref/a/0801886392/
https://www.xarg.org/ref/a/0801886392/
https://doi.org/10.1109/lca.2019.2907539
https://doi.org/10.1109/jiot.2016.2579198

[7] G. Bersuker, M. Mason, and K. L. Jones, “Neuromorphic computing: The potential for

high-performace processing in space,” Nov 2018. [Online]. Available: https://aerospace.

org/sites/default/files/2018-11/Bersuker NeuromorphicComputing 11212018.pdf

[8] A. T. W. L. R. M. R. M. D. P. A. M. Simon Lee, Amy Hut-

putanasin, “Cal poly 1u to 3u cubesat design specification,” Feb 2014. [On-

line]. Available: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/

56e9b62337013b6c063a655a/1458157095454/cds rev13 final2.pdf

[9] “Cal poly 6u cubesat design specification,” June 2018. [On-

line]. Available: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/

t/5b75dfcd70a6adbee5908fd9/1534451664215/6U CDS 2018-06-07 rev 1.0.pdf

[10] R. M. D. P. W. Lan, R. Munakata, “Poly picosatellite orbital deployer mk.iii

rev. e user guide,” March 2014. [Online]. Available: https://static1.squarespace.

com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/

P-POD MkIIIRevE UserGuide CP-PPODUG-1.0-1 Rev1.pdf

[11] T. Prejean, “Nanoracks cubesat deployer (nrcsd) interface definition document

(idd),” May 2018. [Online]. Available: https://nanoracks.com/wp-content/uploads/

NanoRacks-CubeSat-Deployer-NRCSD-Interface-Definition-Document.pdf

[12] D. Gillies, “Rocket lab rideshare cubesat launch in maxwell,”

April 2018. [Online]. Available: https://nanoracks.com/wp-content/uploads/

NanoRacks-CubeSat-Deployer-NRCSD-Interface-Definition-Document.pdf

[13] B. S. D. S. A. G. C. W. A. B. A. G. Sebastian Sabogal, Patrick Gauvin, “Ssivp: Space-

craft supercomputing experiment for stp-h6.” AIAA, 2017.

[14] J. Wertz, Space mission analysis and design. Torrance, Calif. Dordrecht Boston: Mi-

crocosm Kluwer, 1999.

116

https://aerospace.org/sites/default/files/2018-11/Bersuker_NeuromorphicComputing_11212018.pdf
https://aerospace.org/sites/default/files/2018-11/Bersuker_NeuromorphicComputing_11212018.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5b75dfcd70a6adbee5908fd9/1534451664215/6U_CDS_2018-06-07_rev_1.0.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5b75dfcd70a6adbee5908fd9/1534451664215/6U_CDS_2018-06-07_rev_1.0.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-PPODUG-1.0-1_Rev1.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-PPODUG-1.0-1_Rev1.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-PPODUG-1.0-1_Rev1.pdf
https://nanoracks.com/wp-content/uploads/NanoRacks-CubeSat-Deployer-NRCSD-Interface-Definition-Document.pdf
https://nanoracks.com/wp-content/uploads/NanoRacks-CubeSat-Deployer-NRCSD-Interface-Definition-Document.pdf
https://nanoracks.com/wp-content/uploads/NanoRacks-CubeSat-Deployer-NRCSD-Interface-Definition-Document.pdf
https://nanoracks.com/wp-content/uploads/NanoRacks-CubeSat-Deployer-NRCSD-Interface-Definition-Document.pdf

[15] P. Fortescue, Spacecraft systems engineering. Hoboken, N.J: Wiley, 2011.

[16] S. Hirshorn, NASA Systems Engineering Handbook. Washington DC: National Aero-

nautics and Space Administration, 2016.

[17] N. Neel, “Enhancing small satellite based remote sensing capabilities by utilizing ad-

vanced simulated data products for cross calibration techniques,” Master’s thesis, The

University of Georgia, The address of the publisher, 5 2019.

[18] “Technology horizons : a vision for air force science and technology 2010–30,”

2010. [Online]. Available: http://www.defenseinnovationmarketplace.mil/resources/

AF TechnologyHorizons2010-2030.pdf

[19] C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten, “Towards

an integrated GPU accelerated SoC as a flight computer for small satellites,”

in 2019 IEEE Aerospace Conference. IEEE, Mar. 2019. [Online]. Available:

https://doi.org/10.1109/aero.2019.8741765

[20] C. Versteeg, “Thermal management and design of high heat small satellite payloads,”

32nd Annual AIAA/USU Conference on Small Satellites, 2018.

[21] C. Adams, “A near real time space based computer vision system for accurate terrain

mapping,” 32nd Annual AIAA/USU Conference on Small Satellites, 2018.

[22] (2003) Pc/104-plus specification. [Online]. Available: www.winsystems.com/

wp-content/uploads/specs/PC104PlusSpec.pdf

[23] (2017) Jetson tx2 developer kit user guide. [Online]. Available: www.developer.nvidia.

com/embedded/jetpack

117

http://www.defenseinnovationmarketplace.mil/resources/AF_TechnologyHorizons2010-2030.pdf
http://www.defenseinnovationmarketplace.mil/resources/AF_TechnologyHorizons2010-2030.pdf
https://doi.org/10.1109/aero.2019.8741765
www.winsystems.com/wp-content/uploads/specs/PC104PlusSpec.pdf
www.winsystems.com/wp-content/uploads/specs/PC104PlusSpec.pdf
www.developer.nvidia.com/embedded/jetpack
www.developer.nvidia.com/embedded/jetpack

[24] “Ieee standard for environmental specifications for spaceborne computer modules,”

IEEE Std 1156.4-1997, 1997. [Online]. Available: www.ieeexplore.ieee.org/stamp/

stamp.jsp?arnumber=603627&tag=1

[25] “Detailed materials list for thermal/vaccum/space-rating of tx2/tx2i,”

June 2018. [Online]. Available: https://forums.developer.nvidia.com/t/

detailed-materials-list-for-thermal-vaccum-space-rating-of-tx2-tx2i/62250

[26] F. Bruhn, “Introducing radiation tolerant heterogeneous computers for small satellites,”

32nd Annual AIAA/USU Conference on Small Satellites, 2015.

[27] (2016) 6u cubesat design specification. [Online]. Available: http://org.ntnu.no/studsat/

docs/proposal 1/A8%20-%20Cubesat%20Design%20Specification.pdf

[28] “Nanoracks cubesat deployer (nrcsd) interface definition document (idd). nr-nrcsd-

s0003,” 2018. [Online]. Available: www.nanoracks.com

[29] Dunmore aerospace satkit. [Online]. Available: www.dunmore.com/products/

satkit-mli.html

[30] G. D. Badhwar, “The radiation environment in low-earth orbit,” Radiation Research,

vol. 148, no. 5, pp. S3–S10, 1997. [Online]. Available: www.jstor.org/stable/3579710

[31] “World radiation data centre,” 2018. [Online]. Available: www.re3data.org/repository/

r3d100010177

[32] R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth, “Harsh environments:

Space radiation environment, effects, and mitigation,” Johns Hopkins APL Technical

Digest, vol. 28, no. 1, pp. 17–29, 2008.

118

www.ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=603627&tag=1
www.ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=603627&tag=1
https://forums.developer.nvidia.com/t/detailed-materials-list-for-thermal-vaccum-space-rating-of-tx2-tx2i/62250
https://forums.developer.nvidia.com/t/detailed-materials-list-for-thermal-vaccum-space-rating-of-tx2-tx2i/62250
http://org.ntnu.no/studsat/docs/proposal_1/A8%20-%20Cubesat%20Design%20Specification.pdf
http://org.ntnu.no/studsat/docs/proposal_1/A8%20-%20Cubesat%20Design%20Specification.pdf
www.nanoracks.com
www.dunmore.com/products/satkit-mli.html
www.dunmore.com/products/satkit-mli.html
www.jstor.org/stable/3579710
www.re3data.org/repository/r3d100010177
www.re3data.org/repository/r3d100010177

[33] E. Wyrwas, “Body of knowledge for graphics processing units (gpus) nepp-

bok-2018,” 2018. [Online]. Available: www.nasa.gov/sites/default/files/atoms/files/

2017-8-1 stip final-508ed.pdf

[34] R. R. J. Roe, “Standard materials and processes requirements for spacecraft,” Technical

Report NASA-STD-6016A, November 2016.

[35] “The denx u-boot and linux guide (dulg) for canyonlands,” 2018. [Online]. Available:

www.denx.de/wiki/DULG/Manual

[36] (2014) Igloo2 and smartfusion2 65nm commercial flash fpgas interim summary of

radiation test results. [Online]. Available: www.microsemi.com/document-portal/

doc view/134103-igloo2-and-smartfusion2-fpgas-interim-radiation-report

[37] E. Ontiveros, C. Salvaggio, D. Nilosek, N. Raqueño, and J. Faulring, “Evaluation of

image collection requirements for 3d reconstruction using phototourism techniques on

sparse overhead data,” in Algorithms and Technologies for Multispectral, Hyperspectral,

and Ultraspectral Imagery XVIII, S. S. Shen and P. E. Lewis, Eds. SPIE, May 2012.

[Online]. Available: https://doi.org/10.1117/12.919319

[38] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.

Cambridge University Press, ISBN: 0521540518, 2004.

[39] R. T. Collins, “A space-sweep approach to true multi-image matching,” in Proceedings

CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, Jun. 1996, pp. 358–363.

[40] A. Baumberg, “Reliable feature matching across widely separated views,” in Proceed-

ings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat.

No.PR00662), vol. 1, Jun. 2000.

119

www.nasa.gov/sites/default/files/atoms/files/2017-8-1_stip_final-508ed.pdf
www.nasa.gov/sites/default/files/atoms/files/2017-8-1_stip_final-508ed.pdf
www.denx.de/wiki/DULG/Manual
www.microsemi.com/document-portal/doc_view/ 134103-igloo2-and-smartfusion2-fpgas-interim-radiation-report
www.microsemi.com/document-portal/doc_view/ 134103-igloo2-and-smartfusion2-fpgas-interim-radiation-report
https://doi.org/10.1117/12.919319

[41] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Adjustment

— A Modern Synthesis,” in Vision Algorithms: Theory and Practice, ser. Lecture Notes

in Computer Science, B. Triggs, A. Zisserman, and R. Szeliski, Eds. Springer Berlin

Heidelberg, 2000, pp. 298–372.

[42] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and vision

computing, vol. 21, no. 11, pp. 977–1000, 2003.

[43] H. Kuuste, T. Eenmaee, V. Allik, A. Agu, and R. Vendt, “Imaging system for

nanosatellite proximity operations,” Proceedings of the Estonian Academy of Sci-

ences/#/Proceedings of the Estonian Academy of Sciences, vol. 63, no. 2, pp. 250–257,

2014.

[44] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer vi-

sion, 1999. The proceedings of the seventh IEEE international conference on, vol. 2.

Ieee, 1999, pp. 1150–1157.

[45] ——, “Distinctive image features from scale-invariant keypoints,” International journal

of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[46] I. R. Otero and M. Delbracio, “Anatomy of the sift method,” Image Processing On

Line, vol. 4, pp. 370–396, 2014.

[47] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspondence across scenes and its

applications,” IEEE transactions on pattern analysis and machine intelligence, vol. 33,

no. 5, pp. 978–994, 2011.

[48] C. De Boor, “Bicubic spline interpolation,” Journal of mathematics and physics, vol. 41,

no. 1-4, pp. 212–218, 1962.

120

[49] M. Westoby, J. Brasington, N. Glasser, M. Hambrey, and J. Reynolds,

“‘structure-from-motion’ photogrammetry: A low-cost, effective tool for geoscience

applications,” Geomorphology, vol. 179, pp. 300–314, Dec. 2012. [Online]. Available:

https://doi.org/10.1016/j.geomorph.2012.08.021

[50] D. Cotten, T. Jordan, M. Madden, , and B. S., “Structure from motion and 3d recon-

struction,” Manuel of Remote Sensing, pp. 160–166, Jan. 2017.

[51] C. Wu, “Towards linear-time incremental structure from motion,” in 2013

International Conference on 3D Vision. IEEE, Jun. 2013. [Online]. Available:

https://doi.org/10.1109/3dv.2013.25

[52] J. D. Mat́ıas, J. D. Sanjosé, G. López-Nicolás, C. Sagüés, and J. Guerrero,

“Photogrammetric methodology for the production of geomorphologic maps:

Application to the veleta rock glacier (sierra nevada, granada, spain),” Remote

Sensing, vol. 1, no. 4, pp. 829–841, Oct. 2009. [Online]. Available: https:

//doi.org/10.3390/rs1040829

[53] (2016) Crew earth observations video page. [Online]. Available: https://eol.jsc.nasa.

gov/beyondthephotography/crewearthobservationsvideos/

[54] D. A. Bennetts and M. Ouldridge, “An observational study of the anvil

of a winter maritime cumulonimbus cloud,” Quarterly Journal of the Royal

Meteorological Society, vol. 110, no. 463, pp. 85–103, Jan. 1984. [Online]. Available:

https://doi.org/10.1002/qj.49711046308

[55] T. W. Krauss, A. A. Sinkevich, N. E. Veremey, Y. A. Dovgalyuk, and V. D. Stepanenko,

“Study of the development of an extremely high cumulonimbus cloud (andhra pradesh,

india, september 28, 2004),” Russian Meteorology and Hydrology, vol. 32, no. 1, pp.

19–27, Jan. 2007. [Online]. Available: https://doi.org/10.3103/s1068373907010037

121

https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1109/3dv.2013.25
https://doi.org/10.3390/rs1040829
https://doi.org/10.3390/rs1040829
https://eol.jsc.nasa.gov/beyondthephotography/crewearthobservationsvideos/
https://eol.jsc.nasa.gov/beyondthephotography/crewearthobservationsvideos/
https://doi.org/10.1002/qj.49711046308
https://doi.org/10.3103/s1068373907010037

[56] (2016) Geforce gtx 980 specifications. [Online]. Available: http://www.geforce.com/

hardware/desktop-gpus/geforce-gtx-980/specifications

[57] “Nasa lp daac, 2015, aster level 1 precision terrain corrected registered at-sensor

radiance. version 3.” [Online]. Available: https://lpdaac.usgs.gov/dataset discovery/

aster

[58] A. J. Rossi, “Abstracted workflow framework with a structure from motion application.

thesis,” 2014. [Online]. Available: https://scholarworks.rit.edu/theses/7814

[59] R. H. T. S. K. David A. Vallado, Paul Crawford, “Revisiting spacetrack report #3: Rev

2,” Astrodynamics Specialist Conference, 2006.

122

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
https://lpdaac.usgs.gov/dataset_discovery/aster
https://lpdaac.usgs.gov/dataset_discovery/aster
https://scholarworks.rit.edu/theses/7814

	Acknowledgments
	Introduction
	The Cube Satellite and Access to Space
	Planetary Observation from Satellite Platforms
	Computation in Space

	Small Satellite Systems
	Systems and Subsystems Requirements
	The Spectral Ocean Color Satellite
	The Multiview Onboard Computational Imager Satellite

	Design and Architecture of Space Computation
	The SSRL CORGI/TX2i
	Space Operating Linux

	Onboard Computer Vision
	Role of Systems Dynamics
	Camera Systems
	Feature Detection, Extraction, and Matching
	3D Reconstruction
	Bundle Adjustment

	Distributed Computation with Satellites
	Networking Assumptions
	Satellite Swarm Architecture

	Experiments and Results
	Initial Feasibility with VSFM
	SSRLCV Simulations with Blender
	Pipeline Timing
	Hardware Experiments

	Conclusion
	Limitations of Experiments
	Publicly Released Software
	General Considerations for In-Orbit 3D Reconstruction

